6533b7d2fe1ef96bd125e29a

RESEARCH PRODUCT

Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells

Christos TrompoukisIvan GordonSalvo MirabellaValerie DepauwVicky StranoIsodiana CrupiEmanuele SmeccaR. ReitanoAlessandra Alberti

subject

SiliconMaterials sciencePhysics and Astronomy (miscellaneous)SiliconZnO nanorod Silicon solar cellschemistry.chemical_elementNanorodSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaLight scatteringlaw.inventionlawSolar cellZinc oxide C-Si solar cellChemical-bath depositionbusiness.industryScatteringSolar cellEnergy conversion efficiencyWide-bandgap semiconductorLight scatteringCurrent conversion efficiencychemistryLight diffusionScattering simulationOptoelectronicsNanorodTransmitted lightbusinessWavelength rangeChemical bath deposition

description

Light scattering from ZnO nanorods (NR) is investigated, modeled, and applied to a solar cell. ZnO NR (120-1300 nm long, 280-60 nm large), grown by low-cost chemical bath deposition at 90 degrees C, exhibit diffused-to-total transmitted light as high as 70% and 30% in the 400 and 1000 nm wavelength range, respectively. Data and scattering simulation show that ZnO NR length plays a crucial role in light diffusion effect. A transparent ZnO NR film grown on glass and placed on top of a 1 mu m thick c-Si solar cell is shown to enhance the light-current conversion efficiency for wavelengths longer than 600 nm. (C) 2015 AIP Publishing LLC.

https://doi.org/10.1063/1.4905389