0000000000174438

AUTHOR

Emanuele Smecca

showing 2 related works from this author

Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells

2015

Light scattering from ZnO nanorods (NR) is investigated, modeled, and applied to a solar cell. ZnO NR (120-1300 nm long, 280-60 nm large), grown by low-cost chemical bath deposition at 90 degrees C, exhibit diffused-to-total transmitted light as high as 70% and 30% in the 400 and 1000 nm wavelength range, respectively. Data and scattering simulation show that ZnO NR length plays a crucial role in light diffusion effect. A transparent ZnO NR film grown on glass and placed on top of a 1 mu m thick c-Si solar cell is shown to enhance the light-current conversion efficiency for wavelengths longer than 600 nm. (C) 2015 AIP Publishing LLC.

SiliconMaterials sciencePhysics and Astronomy (miscellaneous)SiliconZnO nanorod Silicon solar cellschemistry.chemical_elementNanorodSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaLight scatteringlaw.inventionlawSolar cellZinc oxide C-Si solar cellChemical-bath depositionbusiness.industryScatteringSolar cellEnergy conversion efficiencyWide-bandgap semiconductorLight scatteringCurrent conversion efficiencychemistryLight diffusionScattering simulationOptoelectronicsNanorodTransmitted lightbusinessWavelength rangeChemical bath depositionApplied Physics Letters
researchProduct

Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods

2013

Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alk…

Materials scienceNanostructureOXIDE SURFACESNanoparticleMetalchemistry.chemical_compoundSELF-ASSEMBLED MONOLAYERSNANOPARTICLESOrganic chemistrySELF-ASSEMBLED MONOLAYERS; RAY PHOTOELECTRON-SPECTROSCOPY; POLARIZABLE CONTINUUM MODEL; MOLECULAR-ORBITAL METHODS; SENSITIZED SOLAR-CELLS; SURFACE FUNCTIONALIZATION; OXIDE SURFACES; ZINC-OXIDE; NANOPARTICLES; ALUMINUMZINC-OXIDEPhysical and Theoretical ChemistryBifunctionalSelf-assembled monolayerSURFACE FUNCTIONALIZATIONALUMINUMCombinatorial chemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMOLECULAR-ORBITAL METHODSGeneral EnergychemistryPOLARIZABLE CONTINUUM MODELvisual_artRAY PHOTOELECTRON-SPECTROSCOPYvisual_art.visual_art_mediumSurface modificationNanorodSENSITIZED SOLAR-CELLSBiosensorThe Journal of Physical Chemistry C
researchProduct