0000000000187651

AUTHOR

David A. Dyment

showing 3 related works from this author

Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction

2021

AbstractWhereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene,SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carryingSATB1variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression…

0301 basic medicineMaleModels MolecularMISSENSE MUTATIONSCHROMATINTranscription GeneticCellMedizinDiseaseHaploinsufficiencymedicine.disease_cause0302 clinical medicineMissense mutationde novo variantsGenetics (clinical)INTERLEUKIN-2seizuresGenetics0303 health sciencesMutationChromatin bindingneurodevelopmental disordersMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]SATB1Phenotypemedicine.anatomical_structureintellectual disabilityFemaleHaploinsufficiencyteeth abnormalitiesProtein BindingNeuroinformaticsEXPRESSIONGENESMutation MissenseBiologyBINDING PROTEINREGION03 medical and health sciencesSATB1Protein DomainsReportGeneticsmedicineHPO-based analysisHumansGenetic Association StudiesHpo-based Analysis ; Satb1 ; Cell-based Functional Assays ; De Novo Variants ; Intellectual Disability ; Neurodevelopmental Disorders ; Seizures ; Teeth Abnormalities030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Matrix Attachment Region Binding Proteins030104 developmental biologyNeurodevelopmental DisordersMutationNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]030217 neurology & neurosurgerycell-based functional assays
researchProduct

Clinical reappraisal of SHORT syndrome withPIK3R1mutations: toward recommendation for molecular testing and management

2015

SHORT syndrome has historically been defined by its acronym: short stature (S), hyperextensibility of joints and/or inguinal hernia (H), ocular depression (O), Rieger abnormality (R) and teething delay (T). More recently several research groups have identified PIK3R1 mutations as responsible for SHORT syndrome. Knowledge of the molecular etiology of SHORT syndrome has permitted a reassessment of the clinical phenotype. The detailed phenotypes of 32 individuals with SHORT syndrome and PIK3R1 mutation, including eight newly ascertained individuals, were studied to fully define the syndrome and the indications for PIK3R1 testing. The major features described in the SHORT acronym were not unive…

0301 basic medicinemedicine.medical_specialtyPediatricsTeethingbusiness.industryIntrauterine growth restrictionmedicine.diseaseShort stature3. Good health03 medical and health sciencesInguinal hernia030104 developmental biologyEndocrinologySHORT syndromeInternal medicineSpeech delayGeneticsEtiologymedicinemedicine.symptombusinessLipoatrophyGenetics (clinical)Clinical Genetics
researchProduct

Overlapping phenotypes between SHORT and Noonan syndromes in patients with PTPN11 pathogenic variants

2020

Overlapping syndromes such as Noonan, Cardio-Facio-Cutaneous, Noonan syndrome (NS) with multiple lentigines and Costello syndromes are genetically heterogeneous conditions sharing a dysregulation of the RAS/mitogen-activated protein kinase (MAPK) pathway and are known collectively as the RASopathies. PTPN11 was the first disease-causing gene identified in NS and remains the more prevalent. We report seven patients from three families presenting heterozygous missense variants in PTPN11 probably responsible for a disease phenotype distinct from the classical Noonan syndrome. The clinical presentation and common features of these seven cases overlap with the SHORT syndrome. The latter is the c…

Malemusculoskeletal diseases0301 basic medicineMAPK/ERK pathwaycongenital hereditary and neonatal diseases and abnormalitiesMAP Kinase Signaling SystemProtein Tyrosine Phosphatase Non-Receptor Type 11030105 genetics & heredityBiologyGene productPhosphatidylinositol 3-Kinases03 medical and health sciencesMetabolic DiseasesGeneticsmedicineHumansMissense mutationskin and connective tissue diseasesProtein kinase BGrowth DisordersGenetics (clinical)GeneticsGenetic heterogeneityNoonan SyndromeGenetic Variationmedicine.diseasePTPN11NephrocalcinosisPhenotype030104 developmental biologySHORT syndromeHypercalcemiaNoonan syndromeFemaleMitogen-Activated Protein KinasesSignal TransductionClinical Genetics
researchProduct