0000000000187680

AUTHOR

Alexandre Reymond

0000-0003-1030-8327

Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction

AbstractWhereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene,SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carryingSATB1variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression…

research product

Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants

Purpose: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. Methods: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. Results: The number of rare likely deleterious variants in functionally intolerant genes (“other hits”) correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with thei…

research product

Rare variants in the genetic background modulate the expressivity of neurodevelopmental disorders

AbstractPurposeTo assess the contribution of rare variants in the genetic background towards variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive mutations.MethodsWe analyzed quantitative clinical information, exome-sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated mutations.ResultsThe number of rare secondary mutations in functionally intolerant genes (second-hits) correlated with the expressivity of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in probands with autism carrying gene-disruptive mutations (n=184, p=0.03) compared to …

research product