0000000000187802

AUTHOR

Tommaso Angelone

showing 4 related works from this author

Effects of Conjugated Linoleic Acid and Endurance Training on Peripheral Blood and Bone Marrow of Trained Mice

2007

Fat supplements, especially conjugated linoleic acid (CLA), are increasingly popular ergogenic aids among endurance athletes. To evaluate the importance of fat supplementation in the practice of endurance sports, we investigated the effects of CLA supplementation on body weight, muscle hypertrophy, peripheral blood composition, and bone marrow composition in healthy, young, endurance-trained mice. Young, healthy mice were subdivided into control, trained, and treated groups, according to their running attitudes. Training was performed over a period of 6 weeks on a treadmill, at a gradually increasing duration and speed. CLA-treated groups were gavaged with 0.425 mg x d(-1) CLA supplement fo…

Malelinoleic acidmedicine.medical_specialtyConjugated linoleic acidPhysical Therapy Sports Therapy and RehabilitationBone Marrow Cellsmedicine.disease_causeMuscle hypertrophychemistry.chemical_compoundMiceEndurance trainingInternal medicinePhysical Conditioning AnimalmedicineAnimalsOrthopedics and Sports MedicineLinoleic Acids ConjugatedTreadmillMuscle SkeletalAnalysis of Variancebusiness.industryBody WeightGeneral MedicineNeutrophiliaBlood Cell CountOxidative StressEndocrinologymedicine.anatomical_structurechemistryPhysical EnduranceBone marrowAnalysis of variancemedicine.symptombusinessOxidative stress
researchProduct

Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavo…

2011

Abstract Background and Aims: Moderate red wine consumption associates with lower incidence of cardiovascular diseases. Attention to the source of this cardioprotection was focused on flavonoids, the non-alcoholic component of the red wine, whose intake inversely correlates with adverse cardiovascular events. We analysed whether two red wine flavonoids, quercetin and myricetin, affect mammalian basal myocardial and coronary function. Methods and results: Quercetin and myricetin effects were evaluated on isolated and Langendorff perfused rat hearts under both basal conditions and a- and b-adrenergic stimulation. The intracellular signalling involved in the effects of these flavonoids was ana…

MaleVasoreactivityOctoxynolEndocrinology Diabetes and MetabolismMedicine (miscellaneous)WineVasodilationIn Vitro TechniquesPharmacologySettore BIO/09 - FisiologiaAntioxidantsNitric oxideContractilitychemistry.chemical_compoundFlavonolsAnimalsheterocyclic compoundsRats WistarFlavonoidsCardioprotectionchemistry.chemical_classificationAnalysis of VarianceNutrition and DieteticsChemistryMyocardiumMyricetinfood and beveragesHeartNitric oxideRatsVasodilationBiochemistryInotropismMyricetinQuercetinMyocardial contractilityCardiology and Cardiovascular MedicineQuercetinSignal Transduction
researchProduct

Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart.

2010

Abstract Background and aims The anorexigenic glucagon-like peptide (GLP)-2 is produced by intestinal L cells and released in response to food intake. It affects intestinal function involving G-protein-coupled receptors. To verify whether GLP-2 acts as a cardiac modulator in mammals, we analysed, in the rat heart, the expression of GLP-2 receptors and the myocardial and coronary responses to GLP-2. Methods and results GLP-2 receptors were detected on ventricular extracts by quantitative real-time polymerase chain reaction (Q-RT-PCR) and Western blotting. Cardiac GLP-2 effects were analysed on Langendorff perfused hearts. Intracellular GLP-2 signalling was investigated on Langendorff perfuse…

Maleendocrine systemmedicine.medical_specialtyCardiotonic AgentsNitric Oxide Synthase Type IIIMAP Kinase Signaling SystemG proteinEndocrinology Diabetes and MetabolismBlotting WesternMedicine (miscellaneous)Enzyme-Linked Immunosorbent AssayStimulationIn Vitro TechniquesBiologyReal-Time Polymerase Chain Reactionglucagon-like peptides-2 gut peptides cardiac performanceSettore BIO/09 - FisiologiaGlucagon-Like Peptide-1 Receptorchemistry.chemical_compoundInternal medicineCyclic AMPCyclic GMP-Dependent Protein KinasesGlucagon-Like Peptide 2Receptors GlucagonmedicineAnimalsCyclic adenosine monophosphatePhosphorylationRats WistarReceptorNutrition and Dieteticsdigestive oral and skin physiologyHeartPeptide FragmentsRatsPhospholambanEndocrinologyGene Expression RegulationchemistryInotropismGlucagon-Like Peptide-2 ReceptorCardiology and Cardiovascular MedicinecGMP-dependent protein kinasehormones hormone substitutes and hormone antagonistsIntestinal L CellsSignal Transduction
researchProduct

Cytoskeleton mediates negative inotropism and lusitropism of chromogranin A-derived peptides (human vasostatin1-78 and rat CgA(1-64)) in the rat heart

2010

Cytoskeleton scaffold in cardiac myocytes provides structural support and compartmentalization of intracellular components. It is implicated in cardiac pathologies including hypertrophy and failure, playing a key role in the determinism of contractile and diastolic dysfunctions. Chromogranin A (CgA) and its derived peptides have revealed themselves as novel cardiovascular modulators. In humans, normal CgA levels considerably increase in several pathologies, including heart failure. Recent data have shown on the unstimulated rat heart that human recombinant Vasostatin-1 (hrVS-1) and rat chromogranin A 1-64 (rCgA(1-64)) induce negative inotropic and lusitropic effects counteracting the beta-a…

medicine.medical_specialtyMESH: RatsPhysiologyPhalloidin[SDV]Life Sciences [q-bio]Clinical BiochemistryMESH: Myocytes Cardiacmacromolecular substancesBiologyBiochemistryWortmanninCellular and Molecular Neurosciencechemistry.chemical_compoundEndocrinologyInternal medicineMyosinmedicineMESH: CytoskeletonMyocyteMESH: AnimalsCytoskeletonActinMESH: In Vitro TechniquesMESH: HumansSettore BIO/16 - Anatomia UmanaChromogranin AMESH: Rats WistarMESH: MaleCell biologyMESH: Cell LineMESH: Heart[SDV] Life Sciences [q-bio]EndocrinologychemistryInotropismVasostatin Rat CgA1-64 Rat Langendorff heart Inotropy Lusitropy Cardiomyocytes Cytoskeletonbiology.proteinMESH: Chromogranin A
researchProduct