0000000000188220

AUTHOR

V. Lindholm

showing 5 related works from this author

Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

2022

The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundstatistical [methods]FOS: Physical sciencesAstrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsJoint analysiskosmologia01 natural sciencesmethodsNOpimeä aine[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]mikroaallotSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencestszsurvey010303 astronomy & astrophysicsPhysicsmethods: statistical010308 nuclear & particles physicsComputer Science::Information RetrievalmaailmankaikkeusAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicscross-correlation115 Astronomy Space scienceCosmic background radiation; Large-scale structure of Universe; Methods: statistical; Surveyskosminen taustasäteilySpace and Planetary Sciencemethodlarge-scale structure of Universepimeä energia[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3

2021

Stanford, S. A., et al.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Calibration (statistics)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsColor space217101 natural sciencesCosmologyLarge-scale structure010309 optics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]galaxy spectroscopySettore FIS/05 - Astronomia e AstrofisicaSpitzer Space Telescope0103 physical sciencesDISTRIBUTIONSAstrophysics::Solar and Stellar AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingAstrophysics::Galaxy AstrophysicsPhysicsHardware_MEMORYSTRUCTURESAstrophysics::Instrumentation and Methods for AstrophysicsEuclidAstronomy and AstrophysicsRedshiftGalaxyCosmologySpace and Planetary ScienceGalaxy spectroscopyDark energyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Overview of the JET results

2015

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

Chemical analysiMagnetic confinementEdge localized modeTokamak:Física [Ciências exactas e naturais]Nuclear engineeringplasma-facing componentsTungsten7. Clean energyiter-like walllaw.inventionheat loadsAlcator C-ModlawPlasma-facing componentalcator C-MODQCPhysicsJet (fluid)Thermally activatedDivertormagnetic confinementMagnetic confinement fusionTokamak deviceerosionCondensed Matter PhysicsChemical erosionPost mortem analysiCondensed Matter Physics; Nuclear and High Energy PhysicsBerylliumAtomic physicstokamaksTokamaksNuclear and High Energy Physicschemistry.chemical_elementImpurity accumulationCondensed Matter PhysicNuclear and High Energy Physics; Condensed Matter PhysicsTungstenFísica Física:Physical sciences [Natural sciences]divertorNuclear fusionNuclear and High Energy PhysicPhysics Physical sciencesGas fuel analysifuel retentionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)operationOrders of magnitudechemistryJETtransportMagnetic configuration
researchProduct

Euclid preparation - XVII. Cosmic Dawn Survey: Spitzer Space Telescope observations of the Euclid deep fields and calibration fields

2022

Artículo escrito por un elevado núnmero de autores, sólo se referencian el qque aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiere

SAMPLELarge-scale structure of UniverseDATA RELEASEFormationSurveysobservations Dark energy Dark matter Galaxy: formation Large-scale structure of Universe Surveys [Cosmology]kosmologiaAstrophysicsCosmology: observationdark mattergalaksijoukotpimeä ainesurveysDark energyDark matterobservations [Cosmology]dark energyObservationsLEGACY SURVEYAstrophysics of GalaxiesFísicaAstronomy and Astrophysics115 Astronomy Space scienceEVOLUTIONCosmologygalaksitGALAXIESCosmology: observations; Dark energy; Dark matter; Galaxy: formation; Large-scale structure of Universe; SurveysGalaxyformation [Galaxy]Space and Planetary ScienceGalaxy: formationcosmology: observationslarge-scale structure of Universepimeä energiaCosmology and Nongalactic Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Overview of the JET results with the ITER-like wall

2013

Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…

Nuclear and High Energy PhysicsMaterials scienceREGIMENuclear engineeringchemistry.chemical_element-Condensed Matter PhysicEffective radiated powerTungstenNuclear and High Energy Physics; Condensed Matter PhysicsPedestalPLASMA-FACING COMPONENTSTOKAMAK PLASMASJet (fluid)TUNGSTENDivertorperfomancePlasmaPERFORMANCECondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)chemistryBeta (plasma physics)DIVERTORBerylliumAtomic physics
researchProduct