0000000000188562

AUTHOR

Matthias Hartmann

showing 2 related works from this author

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor.

2004

The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, TrkB.T2) become abundant. However, the signalling and function of these truncated receptors remained largely elusive.We show that overexpression of TrkB.T1 in hippocampal neurons induces the formation of dendritic filopodia, which are known precursors of synaptic spines. The induction of filopodia by T…

Time FactorsGreen Fluorescent ProteinsReceptors Nerve Growth FactorTropomyosin receptor kinase ATransfectionTropomyosin receptor kinase CHippocampusModels BiologicalPC12 CellsReceptor Nerve Growth FactorReceptor tyrosine kinaseLow-affinity nerve growth factor receptorAnimalsReceptor trkBNerve Growth FactorsPseudopodiaCloning MolecularNeuronsbiologyDose-Response Relationship Drugmusculoskeletal neural and ocular physiologyCell DifferentiationCell BiologyDendritesImmunohistochemistryDendritic filopodiaCell biologyProtein Structure TertiaryRatsnervous systemMicroscopy FluorescenceTrk receptorembryonic structuresNeurotrophin bindingCOS Cellsbiology.proteinsense organsNeurotrophinProtein BindingSignal TransductionJournal of cell science
researchProduct

Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins.

2005

Neurotrophins are a family of secreted neuronal survival and plasticity factors comprising NGF, BDNF, neurotrophin-3 (NT-3), and NT-4. Whereas synaptic secretion of BDNF has been described, the routes of intracellular targeting and secretion of NGF, NT-3, and NT-4 in neurons are poorly understood.To allow for a direct comparison of intracellular targeting and release properties, all four mammalian neurotrophins were expressed as green fluorescent protein fusion proteins in cultured rat hippocampal neurons. We show that BDNF and NT-3 are targeted more efficiently to dendritic secretory granules of the regulated pathway of secretion (BDNF, in 98% of cells; NT-3, 85%) than NGF (46%) and NT-4 (…

Time FactorsDevelopment/Plasticity/RepairBiologyHippocampal formationHippocampusPC12 CellsPostsynaptic potentialChlorocebus aethiopsAnimalsHumansSecretionNerve Growth FactorsCells CulturedGeneral NeuroscienceConstitutive secretory pathwaySynapsinFusion proteinCell biologyRatsnervous systemCOS CellsSynapsesbiology.proteinSynaptic VesiclesIntracellularNeurotrophinThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct