0000000000189310
AUTHOR
Luca Pasotti
Optical method for predicting the composition of self-assembled monolayers of mixed thiols on surfaces coated with silver nanoparticles.
With a simple optical method, based on UV-vis absorption spectra on glass slides, it is possible to predict the composition of self-assembled monolayers of mixed thiols, grafted on monolayers of silver nanoparticles. Glass slides are modified with the layer-by-layer technique, first forming a monolayer of mercaptopropyltrimethoxysilane, then grafting a monolayer of silver nanoparticles on it. These surfaces are further coated by single or mixed thiol monolayers, by dipping the slides in toluene solutions of the chosen thiols. Exchange constants are calculated for the competitive deposition between the colorless 1-dodecanethiol or PEG5000 thiol and BDP-SH, with the latter being a thiol-beari…
A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.
A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is,…
Micelles as containers for self-assembled nanodevices: a fluorescent sensor for lipophilicity
Potentiometric titrations, fluorescence versus pH titrations, dynamic light scattering and fluorescence polarization anisotropy studies demonstrate that inside the nanodimensioned Triton X-100 micelles, 1-pyrenecarboxylic acid, PCOO-, forms an apical complex with the Zn2+ cation encircled by a lipophilic cyclen ligand and hugely increasing its fluorescence. The ability of the Zn2+-cyclen-PCOO- complex plus its micellar container to act as a fluorescent sensor to evaluate the lipophilicity of molecular species is demonstrated on the fatty acid series CH 3(CH2)xCOOH (x=0-16). At pH 7.4 a decrease in fluorescence is observed on the addition of fatty acids that is directly related to their chai…
A micellar multitasking device: sensing pH windows and gauging the lipophilicity of drugs with fluorescent signals.
A multitasking fluorescent device can be obtained by forming micelles of Triton X-100, containing a lipophilic macrocyclic Cu(2+) complex and the coordinating fluorophore Coumarin 343 (C343), which features a COOH moiety. At low pH the two micellised components do not interact, and the fluorescence of Courmarin 343 (C343) is intense. At intermediate pH, C343 is deprotonated and coordinates to the Cu(2+) centre in its apical position, with fluorescence quenching. At higher pH the deprotonated C343 is displaced from Cu(2+) by the formation of an OH(-) complex, and the fluorescence is revived. This allows the system to carry out its first task as it behaves as an "on-off-on" fluorescent sensor…
The Cu(II) complex of a C-lipophilized 13aneN4 macrocycle with an additional protonable amino group as micellar anion receptor.
Three 13aneN4 macrocyclic ligands have been prepared bearing a -CH(2)NHR side arm (R = H, n-C(5)H(11), n-C(10)H(21)) on a carbon atom. When Cu(2+) is complexed in the macrocyclic ring, the amino group of the side arm undergoes an acid-base protonation equilibrium but it is not able to coordinate apically the metal cation even when it is deprotonated. The Cu(2+) complex with the ligand bearing the longest appended aliphatic chain is fully confined inside Triton X-100 micelles, and its ability to bind and sequestrate a series of anions inside micelles has been studied at two different pH values, i.e. both with protonated and neutral side-arm amino group. The favourable role played by the prot…
Multicomponent polymeric micelles based on polyaspartamide as tunable fluorescent pH-window biosensors
Abstract PHEA-PEG 5000 -C 16 is a polyaspartamide polymer with appended hydrophilic PEG 5000 functions and hydrophobic n-C 16 units forming biocompatible micelles with a CAC as low as 1.8 × 10 −7 M. The protonation and acidity constants of the polymer's amino and carboxylic groups have been determined by potentiometric titrations at five different concentrations higher than CAC, finding concentration-independent values. Viscosity and polarity of the micellar core have been investigated by means of fluorescent probes, finding local values comparable to those of pure toluene and to the core of sodium dodecyl sulphate micelles, independently on the protonation degree of the polymer. The fluor…