0000000000189381

AUTHOR

Guido Franceschini

0000-0003-2687-1771

eNOS Activation by HDL Is Impaired in Genetic CETP Deficiency.

Mutations in the CETP gene resulting in defective CETP activity have been shown to cause remarkable elevations of plasma HDL-C levels, with the accumulation in plasma of large, buoyant HDL particles enriched in apolipoprotein E. Genetic CETP deficiency thus represents a unique tool to evaluate how structural alterations of HDL impact on HDL atheroprotective functions. Aim of the present study was to assess the ability of HDL obtained from CETP-deficient subjects to protect endothelial cells from the development of endothelial dysfunction. HDL isolated from one homozygous and seven heterozygous carriers of CETP null mutations were evaluated for their ability to down-regulate cytokine-induced…

research product

CETP levels rather than polymorphisms as markers of coronary risk: Healthy athlete with high HDL-C and coronary disease—effectiveness of probucol

research product

Distant Homology Modeling of LCAT and Its Validation through In Silico Targeting and In Vitro and In Vivo Assays

LCAT (lecithin:cholesterol acyltransferase) catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late '90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallog…

research product