0000000000189493
AUTHOR
Vincent Nolot
Monge Problem on infinite dimensional Hilbert space endowed with suitable Gaussian measure
In this paper we solve the Monge problem on infinite dimensional Hilbert space endowed with a suitable Gaussian measure, that satisfies the Lebesgue differentiation theorem.
Sobolev estimates for optimal transport maps on Gaussian spaces
We will study variations in Sobolev spaces of optimal transport maps with the standard Gaussian measure as the reference measure. Some dimension free inequalities will be obtained. As application, we construct solutions to Monge-Ampere equations in finite dimension, as well as on the Wiener space.
Optimal transport on the classical Wiener space with different norms
In this paper we study two basic facts of optimal transportation on Wiener space W. Our first aim is to answer to the Monge Problem on the Wiener space endowed with the Sobolev type norm (k,gamma) to the power of p (cases p = 1 and p > 1 are considered apart). The second one is to prove 1-convexity (resp. C-convexity) along (constant speed) geodesics of relative entropy in (P2(W);W2), where W is endowed with the infinite norm (resp. with (k,gamma) norm), and W2 is the 2-distance of Wasserstein.
Convexities and optimal transport problems on the Wiener space
The aim of this PhD is to study the optimal transportation theory in some abstract Wiener space. You can find the results in four main parts and they are aboutThe convexity of the relative entropy. We will extend the well known results in finite dimension to the Wiener space, endowed with the uniform norm. To be precise the relative entropy is (at least weakly) geodesically 1-convex in the sense of the optimal transportation in the Wiener space.The measures with logarithmic concave density. The first important result consists in showing that the Harnack inequality holds for the semi-group induced by such a measure in the Wiener space. The second one provides us a finite dimensional and dime…