0000000000189724

AUTHOR

Catherine Llanes

showing 5 related works from this author

Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa

2018

ABSTRACT When overproduced, the multidrug efflux system MexEF-OprN increases the resistance of Pseudomonas aeruginosa to fluoroquinolones, chloramphenicol, and trimethoprim. In this work, we demonstrate that gain-of-function mutations in the regulatory gene mexT result in oligomerization of the LysR regulator MexT, constitutive upregulation of the efflux pump, and increased resistance in clinical isolates.

0301 basic medicine030106 microbiologyMicrobial Sensitivity Tests[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.disease_causeMicrobiology03 medical and health sciencesAntibiotic resistanceDownregulation and upregulationMechanisms of Resistance[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyDrug Resistance BacterialmedicinePharmacology (medical)OverproductionComputingMilieux_MISCELLANEOUSRegulator genePharmacologychemistry.chemical_classificationChemistryPseudomonas aeruginosaChloramphenicolGene Expression Regulation Bacterial[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology3. Good healthAmino acidAnti-Bacterial AgentsInfectious Diseases[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyAmino Acid SubstitutionMutationPseudomonas aeruginosaEffluxmedicine.drug
researchProduct

Negative Impact of Citral on Susceptibility of Pseudomonas aeruginosa to Antibiotics

2021

Essential oils (EOs) or their components are widely used by inhalation or nebulization to fight mild respiratory bacterial infections. However, their interaction with antibiotics is poorly known. In this study we evaluated the effects of citral, the main component of lemongrass oil, on in vitro susceptibility of Pseudomonas aeruginosa to antibiotics. Exposure of strain PA14 to subinhibitory concentrations of citral increased expression of operons encoding the multidrug efflux systems MexEF-OprN and MexXY/OprM, and bacterial resistance to anti-pseudomonal antibiotics including imipenem (twofold), gentamicin (eightfold), tobramycin (eightfold), ciprofloxacin (twofold), and colistin (≥128-fold…

0301 basic medicineMicrobiology (medical)antibiotic resistancemedicine.drug_class[SDV]Life Sciences [q-bio]030106 microbiologyAntibioticsmedicine.disease_causeCitralMicrobiologyMicrobiology03 medical and health scienceschemistry.chemical_compoundtobramycin-citral Schiff baseTobramycinmedicine[CHIM]Chemical Sciencesessential oilscitralOriginal ResearchPseudomonas aeruginosaChemistryAminoglycosidecolistin-citral Schiff baseSciences du Vivant [q-bio]/Microbiologie et Parasitologie[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyeffluxQR1-5023. Good health030104 developmental biology[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyPseudomonas aeruginosaColistin[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyGentamicinEfflux[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.drugFrontiers in Microbiology
researchProduct

Involvement of the Pseudomonas aeruginosa MexAB–OprM efflux pump in the secretion of the metallophore pseudopaline

2020

ABSTRACTThe ability for all organisms to acquire metals from their environment is essential for life. To overcome the metal restriction imposed by the host’s nutritional immunity, bacterial pathogens exploits the use of small high metal affinity molecules called metallophores. Metallophores are first synthetized in the cytoplasm, then secreted into the medium where they sequester the metal. The metal-metallophore complex is then imported into the bacterium following binding to dedicated cell surface receptors. Recently, a new family of metallophores has been discovered in pathogenic bacteria called staphylopine in Staphylococcus aureus and pseudopaline in Pseudomonas aeruginosa. Here, we ar…

Bodily Secretions[SDV]Life Sciences [q-bio]Microbial Sensitivity TestsBiologymedicine.disease_causeMicrobiology03 medical and health sciencesBacterial ProteinsIn vivoDrug Resistance Multiple BacterialpseudopalinemedicineInner membraneSecretionMolecular Biology030304 developmental biology0303 health sciencesMexAB–OprMBacteriametallophoreChemistry030306 microbiologyPseudomonas aeruginosaMembrane Transport Proteinsbiology.organism_classificationIn vitroCell biology[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyCytoplasmPseudomonas aeruginosaefflux pumpEffluxCell envelopeBacterial outer membraneOligopeptidesBacteriaBacterial Outer Membrane Proteins
researchProduct

Role of AxyZ Transcriptional Regulator in Overproduction of AxyXY-OprZ Multidrug Efflux System in Achromobacter Species Mutants Selected by Tobramycin

2017

ABSTRACT AxyXY-OprZ is an RND-type efflux system that confers innate aminoglycoside resistance to Achromobacter spp. We investigated here a putative TetR family transcriptional regulator encoded by the axyZ gene located upstream of axyXY-oprZ . An in-frame axyZ gene deletion assay led to increased MICs of antibiotic substrates of the efflux system, including aminoglycosides, cefepime, fluoroquinolones, tetracyclines, and erythromycin, indicating that the product of axyZ negatively regulates expression of axyXY-oprZ . Moreover, we identified an amino acid substitution at position 29 of AxyZ (V29G) in a clinical Achromobacter strain that occurred during the course of chronic respiratory tract…

0301 basic medicineAchromobacterCefepime030106 microbiologyPopulationAchromobacterMicrobial Sensitivity TestsBiologymedicine.disease_causeMicrobiology03 medical and health scienceschemistry.chemical_compoundAntibiotic resistanceBacterial ProteinsMechanisms of ResistanceDrug Resistance Multiple BacterialTobramycinmedicineHumansPharmacology (medical)TetRAmino Acid Sequence[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]educationComputingMilieux_MISCELLANEOUSPharmacologyeducation.field_of_studyPseudomonas aeruginosaMembrane Transport Proteins[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGene Expression Regulation Bacterialbiology.organism_classification[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyAnti-Bacterial Agents3. Good healthInfectious DiseasesAmino Acid SubstitutionchemistryPseudomonas aeruginosaTobramycinTrans-ActivatorsEffluxGene DeletionBacterial Outer Membrane Proteinsmedicine.drugAntimicrobial Agents and Chemotherapy
researchProduct

Cinnamaldehyde Induces Expression of Efflux Pumps and Multidrug Resistance in Pseudomonas aeruginosa

2019

Essential oils or their components are increasingly used to fight bacterial infections. Cinnamaldehyde (CNA), the main constituent of cinnamon bark oil, has demonstrated interesting properties in vitro against various pathogens, including Pseudomonas aeruginosa. In the present study, we investigated the mechanisms and possible therapeutic consequences of P. aeruginosa adaptation to CNA. Exposure of P. aeruginosa PA14 to subinhibitory concentrations of CNA caused a strong albeit transient increase in the expression of operons that encode the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY/OprM. This multipump activation enhanced from 2- to 8-fold the resistance (MIC) of PA14 to …

medicine.drug_classAntibioticsMicrobial Sensitivity Testsmedicine.disease_causeCinnamaldehydeMicrobiology03 medical and health scienceschemistry.chemical_compoundAntibiotic resistanceMechanisms of ResistanceDrug Resistance Multiple BacterialOils VolatilemedicineTobramycin[CHIM]Chemical SciencesPharmacology (medical)AcroleinComputingMilieux_MISCELLANEOUS030304 developmental biologyPharmacology0303 health sciences030306 microbiologyPseudomonas aeruginosaMembrane Transport Proteins[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologybiochemical phenomena metabolism and nutrition[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciencesAnti-Bacterial Agents3. Good healthCiprofloxacinMultiple drug resistanceInfectious DiseaseschemistryPseudomonas aeruginosaEffluxmedicine.drug
researchProduct