0000000000189768

AUTHOR

Ravhi S. Kumar

In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compressi…

research product

Monazite-type SrCrO4 under compression

We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low-pressure and high-pressure phases as well as the frequencies an…

research product

High-pressure study of substrate material ScAlMgO4

We report on the structural properties of ScAlMgO4 studied under quasi-hydrostatic pressure using synchrotron high-pressure x-ray diffraction up to 40 GPa. We also report on single-crystal studies of ScAlMgO4 performed at 300 K and 100 K. We found that the low-pressure phase remains stable up to 24 GPa. At 28 GPa, we detected a reversible phase transformation. The high-pressure phase is assigned to a monoclinic distortion of the low-pressure phase. No additional phase transition is observed up to 40 GPa. In addition, the equation of state, compressibility tensor, and thermal expansion coefficients of ScAlMgO4 are determined. The bulk modulus of ScAlMgO4 is found to be 143(8) GPa, with a str…

research product

Theoretical and experimental study of CaWO4 and SrWO4 under pressure

Abstract In this paper, we combine a theoretical study of the structural phases of CaWO 4 and SrWO 4 under high pressure along with the results of angle-dispersive X-ray diffraction (ADXRD) and X-ray absorption near-edge structure (XANES) measurements of both tungstates up to approximately 20 GPa. The theoretical study was performed within the ab initio framework of the density functional theory (DFT) using a plane-wave basis set and the pseudopotential scheme, with the generalized gradient approximation (GGA) for the exchange and correlation contribution to the energy. Under normal conditions, CaWO 4 and SrWO 4 crystallize in the scheelite structure. Our results show that in a hydrostatic …

research product

High-pressure structural transformations of PbCrO4 up to 51.2 GPa: An angle-dispersive synchrotron X-ray diffraction study

Abstract We report on high-pressure X-ray diffraction measurements up to 51.2 GPa in PbCrO 4 at room temperature. Three high-pressure phases with structures different than the ambient-pressure monazite-type ( P 2 1 / n ) are reported. One phase transition was found at 3.8 GPa to an isomorphic structure to monazite. A second transition occurs at 11.1 GPa. After this transition, the coexistence of tetragonal ( I 4 1 / a ) and monoclinic ( P 2 1 ) structures is detected up to 21.1 GPa. Beyond this pressure and up to 51.2 GPa, only the high-pressure monoclinic phase is observed. Upon decompression all structural changes are reversible. Finally, the axial compressibilities for the different phas…

research product

High-pressure transition to the post-barite phase in BaCrO4hashemite

A recent high-pressure study on barium chromate BaCrO${}_{4}$ reported a phase transition but the structure of the high-pressure phase structure could not be identified. This high-pressure phase was suggested to have a monoclinic structure different from other high-pressure forms of $AB$O${}_{4}$-type compounds. In this work, we have carried out x-ray diffraction measurements up to 46 GPa using He as the quasihydrostatic pressure medium and density-functional theory calculations. Our studies allow us to identify the high-pressure phase as the $P$2${}_{1}$2${}_{1}$2${}_{1}$ post-barite-type phase, recently reported for BaSO${}_{4}$. The equations of state of both, the low- and the high-press…

research product

New high-pressure phase and equation of state of Ce2Zr2O8

In this paper we report a new high-pressure rhombohedral phase of Ce2Zr2O8 observed from high-pressure angle-dispersive x-ray diffraction and Raman spectroscopy studies up to nearly 12 GPa. The ambient-pressure cubic phase of Ce2Zr2O8 transforms to a rhombohedral structure beyond 5 GPa with a feeble distortion in the lattice. Pressure evolution of unit-cell volume showed a change in compressibility above 5 GPa. The unit-cell parameters of the high-pressure rhombohedral phase at 12.1 GPa are ah = 14.6791(3) {\AA}, ch = 17.9421(5) {\AA}, V = 3348.1(1) {\AA}3. The structure relation between the parent cubic (P2_13) and rhombohedral (P3_2) phases were obtained by group-subgroup relations. All t…

research product

Determination of the high-pressure crystal structure ofBaWO4andPbWO4

We report the results of both angle-dispersive x-ray diffraction and x-ray absorption near-edge structure studies in $\mathrm{Ba}\mathrm{W}{\mathrm{O}}_{4}$ and $\mathrm{Pb}\mathrm{W}{\mathrm{O}}_{4}$ at pressures of up to $56\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ and $24\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, respectively. $\mathrm{Ba}\mathrm{W}{\mathrm{O}}_{4}$ is found to undergo a pressure-driven phase transition at $7.1\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ from the tetragonal scheelite structure (which is stable under normal conditions) to the monoclinic fergusonite structure whereas the same transition takes place in $\mathrm{Pb}\mathrm{W}{\mathrm{O}}_{4}$ at $9\phantom{\rule{0…

research product

Post-spinel transformations and equation of state inZnGa2O4: Determination at high pressure byin situx-ray diffraction

Room-temperature angle-dispersive x-ray diffraction measurements on spinel ZnGa{sub 2}O{sub 4} up to 56 GPa show evidence of two structural phase transformations. At 31.2 GPa, ZnGa{sub 2}O{sub 4} undergoes a transition from the cubic spinel structure to a tetragonal spinel structure similar to that of ZnMn{sub 2}O{sub 4}. At 55 GPa, a second transition to the orthorhombic marokite structure (CaMn{sub 2}O{sub 4}-type) takes place. The equation of state of cubic spinel ZnGa{sub 2}O{sub 4} is determined: V{sub 0} = 580.1(9) {angstrom}{sup 3}, B{sub 0} = 233(8) GPa, B'{sub 0} = 8.3(4), and B''{sub 0} = -0.1145 GPa{sup -1} (implied value); showing that ZnGa{sub 2}O{sub 4} is one of the less comp…

research product

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…

research product

High-pressure x-ray diffraction study of SrMoO4 and pressure-induced structural changes

SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A, b = 11.191(9) A, c = 5.195 (5) A, and beta = 90.9, Z = 4 at 13.1 GPa. There is no significant volume collapse at the phase transition. No additional phase transitions were observed and on release of pressure the initial phase is recovered, implying that the observed structural modifications are reversible. The reported transition appeared to be a ferroelastic second-order transformation producing a structure that is a monoclinic distortion of t…

research product

High-pressure structural study of the scheelite tungstatesCaWO4andSrWO4

Angle-dispersive x-ray-diffraction and x-ray-absorption near-edge structure measurements have been performed on ${\mathrm{CaWO}}_{4}$ and ${\mathrm{SrWO}}_{4}$ up to pressures of approximately 20 GPa. Both materials display similar behavior in the range of pressures investigated in our experiments. As in the previously reported case of ${\mathrm{CaWO}}_{4}$, under hydrostatic conditions ${\mathrm{SrWO}}_{4}$ undergoes a pressure-induced scheelite-to-fergusonite transition around 10 GPa. Our experimental results are compared to those found in the literature and are further supported by ab initio total-energy calculations, from which we also predict the instability at larger pressures of the …

research product

High pressure structure of Tb2Ti2O7 pyrochlore at cryogenic temperatures

The structure of Th 2 Ti 2 O 7 pyrochlore was investigated at high pressures up to 24 GPa at cryogenic temperatures down to 6.5 K using angular dispersive X-ray diffraction with synchrotron radiation at HPCAT, Advanced Photon Source. The cell parameters were obtained by performing full profile Rietveld refinements of the diffraction data. The equation of state is obtained at low temperatures by fitting the pressure-volume data to a second order Birch Murnaghan eqation and a bulk modulus value of 168(4) GPa is obtained. The results show persistance of the pyrochlore structure up to the maximum pressure studied in the experiment and further indicate that pressure induces solely magnetic order…

research product