0000000000189781
AUTHOR
Jean-paul Lhomme
Radiative surface temperature and convective flux calculation over crop canopies
The analysis presented in this paper aims at a better understanding of the potential role of radiative temperature, as measured by a radiometer over crops, in sensible heat flux calculation. Defining radiative temperature as the mean temperature of the surfaces viewed by the radiometer (leaves and soil surface) and assuming that an Ohm's law type formula can be used to express sensible heat flux as a function of the difference between air temperature and radiative temperature, the aerodynamic resistance which divides this temperature difference has been analytically defined. The parameters which appear in the resistance expression depend essentially on wind velocity and canopy structure but…
La formulation de l'evaporation sous forme d'une loi d'Ohm
National audience
A simple modelling of crop water balance for agrometeorological applications
Abstract A simple agrometeorological model of crop water balance is presented. It aims at the best estimate possible of the water balance components with the simplest formulation and the minimum set of input data. The model works with a time step of one day and uses rainfall and the calculated evapotranspiration as the climatic inputs. Some soil and crop characteristics, such as the maximum available moisture and crop coefficients are required as input parameters. The model is tested using experimental data obtained on wheat and lucerne crops in the Paris region. The sensitivity of the model is discussed and some possible applications to rainfed crop management are presented.
Analysis and formulation of heat and water vapour transfer based on a multi-layer model
ISBN 2-7380-0006-1 14 ref.; National audience
Modelacion agrometeorologica del balance hidrico
International audience
HAPEX-Sahel
The variation in evaporative fraction and actual evaporation is examined for three sample days in the HAPEX-Sahel Intensive Observation Period (IOP), including data from all the vegetation types and sites. The trends in evaporative fraction over the IOP are also presented for eight sites. The high rate of evaporation from bare soil in the days following rainfall produces a variability in evaporation which makes differences between sites difficult to interpret on a day-to-day basis, but over the whole IOP it is shown that the millet uses a smaller proportion of the available energy for evaporation than the tiger bush or fallow savannah. The combined effect of differences in the total energy …