0000000000189914

AUTHOR

Alexander Eychmüller

0000-0001-9926-6279

showing 4 related works from this author

Investigations of the emission properties of single CdS-nanocrystallites

1997

Semiconductor nanocrystallites (NCs) with a radius in the range of the bulk exciton radius exhibit a strong quantum size effect. We investigated CdS-NCs, that were spin coated on a glass cover slip, with a low temperature confocal microscope. At low coverage we could image the fluorescence light from single NCs. The typical emission spectra of single NCs show four peaks. Besides the main peak related to near bandgap recombination, up to two LO-phonon satellites and one blue shifted peak were observed. It could be shown that the absorption can be polarization dependent. From the images as well as from the intensity autocorrelation function it could be concluded that the fluorescence emission…

Microscopebusiness.industryBand gapChemistryGeneral Chemical EngineeringExcitonAnalytical chemistryFluorescenceMolecular physicsBlueshiftlaw.inventionSemiconductorNanocrystallawCondensed Matter::SuperconductivityEmission spectrumbusiness
researchProduct

Exploring integration prospects of opal-based photonic crystals

2003

Different methods of functionalisation of thin opal films are discussed, including synthesis of opals on pre-patterned substrates, post-synthesis electron beam lithography, preparation of opals with heterogeneous photonic band gap structure and integrating opals with light sources. These approaches have been tested experimentally and key technological problems have been identified.

opalsMaterials scienceOPALSMechanical EngineeringMetals and AlloysNanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic Materialsfunctionalisationthin filmsMechanics of MaterialsOptical materialsphotonic crystalsMaterials Chemistrynanoimprint lithographyElectron-beam lithographyPhotonic crystalSynthetic Metals
researchProduct

Photonic crystals based on two-layer opaline heterostructures

2002

AbstractOptical properties of several heterostructures representing two-layer opaline photonic crystals have been examined. Two separate stop-bands have been observed both in transmission and emission spectra. The effect of the interface disorder on the optical spectra was not observed, probably, due to the insufficient degree of order of the opaline layers.

Materials sciencebusiness.industryTwo layerPhysics::OpticsOptoelectronicsDegree of orderHeterojunctionEmission spectrumbusinessOptical spectraPhotonic crystal
researchProduct

Quantum wells within quantum dots, a CdS/HgS nanoheterostructure with global and local confinement

1998

Semiconductor nanocrystals prepared by methods of wet chemistry are similar to MBE grown quantum dots where the mobility of the charge carriers is reduced to zero dimensionality. In this paper we summarize the physics of a unique system in which the charge carriers are locally confined within a heterogeneous quantum dot. With high resolution electron microscopy we will show that epitaxial growth ot atomic layer precision is possible by methods of solution chemistry leading to CdS quantum dots with embedded HgS quantum wells (QDQWs). The photophysics of this system is investigated by time-correlated single photon counting, transient differential absorption and fluorescence line narrowing spe…

business.industryChemistryGeneral Chemical EngineeringElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPhoton countingCondensed Matter::Materials ScienceEffective mass (solid-state physics)SemiconductorQuantum dotQuantum dot laserOptoelectronicsCharge carrierbusinessQuantum well
researchProduct