0000000000189925
AUTHOR
N. Nastasi
Nanocrystal metal-oxide-semiconductor memories obtained by chemical vapor deposition of Si nanocrystals
We have realized nanocrystal memories by using silicon quantum dots embedded in silicon dioxide. The Si dots with the size of few nanometers have been obtained by chemical vapor deposition on very thin tunnel oxides and subsequently coated with a deposited SiO2 control dielectric. A range of temperatures in which we can adequately control a nucleation process, that gives rise to nanocrystal densities of ∼3×1011 cm−2 with good uniformity on the wafer, has been defined. The memory effects are observed in metal-oxide-semiconductor capacitors or field effect transistors by significant and reversible flat band or threshold voltage shifts between written and erased states that can be achieved by …
Nanocrystal MOS memories obtained by LPCVD deposition of Si nanograins
We have realized silicon quantum dots embedded in SiO2 which act as nano-floating gates of MOS memories. The dots with nanometer sizes have been deposited by LPCVD on a 3nm tunnel oxide. Two processes at a fixed pressure have been explored by varying the temperature. SiH4 with a N2 carrier gas have been used in the former case, SiH4 and H2 have been used in the latter. In both cases a nanocrystalline silicon layer is obtained, with nanocrystals a density higher than 1011 cm-2. The process with H2 carrier gas is more controllable and leads to the formation of nanocrystals with a more regular shape. In both cases the density of grains is able to originate detectable threshold shifts in the me…