0000000000189981

AUTHOR

Jeremy J. Midgley

Strong signature of selection in seeder populations but not in resprouters of the fynbos heathErica coccinea(Ericaceae)

A higher frequency of natural selection is expected in populations of organisms with shorter generation times. In fire-prone ecosystems, populations of seeder plants behave as functionally semelparous populations, with short generation times compared to populations of resprouter plants, which are truly iteroparous. Therefore, a stronger signature of natural selection should be detected in seeder populations, favoured by their shorter generation times and higher rates of population turnover. Here we test this idea in Erica coccinea from the Cape Floristic Region, which is dimorphic for post-fire regeneration mode. We measured three floral traits supposedly subject to natural selection in see…

research product

Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?

Background and aims According to the Grant-Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Gra…

research product