0000000000190046

AUTHOR

David E. Over

showing 4 related works from this author

Probabilistic inferences from conjoined to iterated conditionals

2017

Abstract There is wide support in logic, philosophy, and psychology for the hypothesis that the probability of the indicative conditional of natural language, P ( if A then B ) , is the conditional probability of B given A, P ( B | A ) . We identify a conditional which is such that P ( if A then B ) = P ( B | A ) with de Finetti's conditional event, B | A . An objection to making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of these compounds and iterations. We interpret the compounds and iterations as cond…

Indicative conditionalCounterfactual conditionalSettore MAT/06 - Probabilita' E Statistica MatematicaCompound conditionalInference02 engineering and technology050105 experimental psychologyTheoretical Computer ScienceArtificial Intelligence0202 electrical engineering electronic engineering information engineeringFOS: Mathematics0501 psychology and cognitive sciencesEvent (probability theory)Discrete mathematicsApplied Mathematics05 social sciencesProbability (math.PR)Probabilistic logicConditional probabilityCoherence (philosophical gambling strategy)Mathematics - Logic03b48 60A99Settore MAT/01 - Logica MatematicaLogical biconditionalCenteringp-EntailmentIterated conditional020201 artificial intelligence & image processingCounterfactualLogic (math.LO)CoherenceSoftwareMathematics - Probability
researchProduct

On Trivalent Logics, Compound Conditionals, and Probabilistic Deduction Theorems

2023

In this paper we recall some results for conditional events, compound conditionals, conditional random quantities, p-consistency, and p-entailment. Then, we show the equivalence between bets on conditionals and conditional bets, by reviewing de Finetti's trivalent analysis of conditionals. But our approach goes beyond de Finetti's early trivalent logical analysis and is based on his later ideas, aiming to take his proposals to a higher level. We examine two recent articles that explore trivalent logics for conditionals and their definitions of logical validity and compare them with our approach to compound conditionals. We prove a Probabilistic Deduction Theorem for conditional events. Afte…

FOS: Computer and information sciencesArtificial Intelligence (cs.AI)Computer Science - Artificial Intelligence
researchProduct

Probabilities of conditionals and previsions of iterated conditionals

2019

Abstract We analyze selected iterated conditionals in the framework of conditional random quantities. We point out that it is instructive to examine Lewis's triviality result, which shows the conditions a conditional must satisfy for its probability to be the conditional probability. In our approach, however, we avoid triviality because the import-export principle is invalid. We then analyze an example of reasoning under partial knowledge where, given a conditional if A then C as information, the probability of A should intuitively increase. We explain this intuition by making some implicit background information explicit. We consider several (generalized) iterated conditionals, which allow…

Background informationSettore MAT/06 - Probabilita' E Statistica MatematicaInference02 engineering and technologyConditional probabilities and previsionTheoretical Computer ScienceConditional random quantitieAffirmation of the ConsequentArtificial Intelligence020204 information systemsFOS: Mathematics0202 electrical engineering electronic engineering information engineeringConjoined and iterated conditionalMathematicsIndependence and uncorrelation.Applied MathematicsProbability (math.PR)Conditional probabilityMathematics - LogicTrivialityIterated function020201 artificial intelligence & image processingLogic (math.LO)Mathematical economicsCoherenceSoftwareMathematics - ProbabilityIntuition
researchProduct

Centering and Compound Conditionals under Coherence

2016

There is wide support in logic , philosophy , and psychology for the hypothesis that the probability of the indicative conditional of natural language, \(P(\textit{if } A \textit{ then } B)\), is the conditional probability of B given A, P(B|A). We identify a conditional which is such that \(P(\textit{if } A \textit{ then } B)= P(B|A)\) with de Finetti’s conditional event, B|A. An objection to making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of these compounds and iterations. We interpret the compounds a…

Discrete mathematicsIndicative conditionalcenteringSettore MAT/06 - Probabilita' E Statistica Matematica05 social sciencesClassical logicConditional probabilityInference02 engineering and technologyCoherence (philosophical gambling strategy)p-entailmentn-conditional event050105 experimental psychologycoherenceLogical biconditionalp-validity0202 electrical engineering electronic engineering information engineeringbiconditional event020201 artificial intelligence & image processing0501 psychology and cognitive sciencesProbabilistic analysis of algorithmsArithmeticMathematicsEvent (probability theory)Conditional
researchProduct