0000000000190222

AUTHOR

Yu. Dekhtyar

Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles

In this work, the properties of hydroxyapatite (HAP) nanoparticles (NPs) have been studied both theoretically and experimentally focusing on computational analysis. HAP is widely used to fabricate implants, for drug delivery, etc. The physical properties of the nanosized HAP particles play an important role in the interaction with cells in the human body and are of great interest. Computer simulation was employed to understand the properties of HAP clusters (Ca(5)(PO(4))(3)OH) including formation energies, dipole moments and polarization (surface charges) by molecular mechanics (MM + , OPLS) and mostly by quantum semi-empirical Hartree-Fock (PM3) methods. The size of the simulated cluster i…

research product

Self — Assembled System: Semiconductor and Virus Like Particles

Virus like nanoparticles (VLP) are in use to be absorbed by cells to cause biological effects. To increase a local concentration of VLP, nanoparticles-carriers bringing the latter to the target cell could be employed. N-type and p-type Si semiconductor nanoparticles, to control adhesion of VLP were applied. Optical absorbance spectra and electron microscopy evidenced that VLP became connected to Si nanoparticles. Moreover, a density of the adhered VLP depended on the type of both semiconductor and VLP.

research product

Self-Assembled System of Semiconductor and Virus Like Nanoparticles

Virus like nanoparticles (VLP) are in use to be absorbed by cells to cause biological effects. To increase a local concentration of VLP, nanoparticles-carriers bringing the latter to the target cell could be employed. N-type and p-type Si semiconductor nanoparticles, to control adhesion of VLP were applied. Optical absorbance spectra and electron microscopy evidenced that VLP became connected to Si nanoparticles. Moreover, a density of the adhered VLP depended on the type of both semiconductor and VLP.

research product

Atomic Force Microscopy Study of Yeast Cells Influenced by High Voltage Electrical Discharge

Human cells are the eukaryotic ones. Simulation of wide-spectrum electromagnetic radiation influence on eukaryotic cells was performed with yeast which is usually used now in molecular biological and medical biological investigations as the ideal model of eukaryotic system. The aim of the research was to observe possible induced alterations of the cell morphology. Atomic force microscopy (AFM) and electron scanning microscopy (ESM) have been applied to image the surface of cells exposed to electromagnetic radiation.

research product

PBS Nanodots for Ultraviolet Radiation Nanosensor

PbS nanodots embedded in a zirconium oxide nanofilm were explored as possible ultraviolet (UV) sensors for nanodosimetry purposes. The nanodots were excited by ultraviolet photons to get emission of weak electrons. The emitted charge correlated to UV exposure indicates that PbS nanodots have potential for use as UV sensors for nanodosimetry.

research product

Inorganic Nanoparticle as a Carrier for Hepatitis B Viral Capsids

Virus like particles (VLP) are used to transport immune response-modulating agents to target cells to treat them. In order to deliver a high concentration of VLP to the cell, a number of VLP can be attached to a nanoparticle to be used as a nanolorry. In this study, SiO2 nanoparticles were attached to Hepatitis B VLP. Spectrophotometry measurements, electron, and fluorescent microscopy evidence showed that the SiO2 – Hepatitis B VLP complexes were formed.

research product

Time Dependent Deterioration of the X-Ray Dental Diagnostic Equipment

Modern dental X-ray examinations are essential for diagnosis. The goal of this paper is to demonstrate time dependent behavior of dose providing parameters, which help to determine equipment’s age effects on the x-ray machine parameters. Also the comparisons between two different dental X-ray generator equipment types half-period and high frequency was made.

research product

PbS Nanodots Embedded in ZrO2 Thin Films for Ultraviolet Radiation Dosimetry

PbS nanodots embedded in ZrO2 thin film matrix (ZrO2:PbS films) were investigated for UV radiation dosimetry purposes. ZrO2:PbS films were UV irradiated using wavelengths 250 - 400 nm. Photoelectron emission spectra of ZrO2:PbS films were recorded and band structure of the films was calculated. It was found that density of localized states increased with increase in concentration of PbS nanodots which allowed to suggest that PbS nanodots are responsible for creation of localized states. Number of localized states decreased after UV irradiation. The linear correlation between number of localized states and time of UV exposure was observed. Observed changes in band structure of ZrO2:PbS films…

research product

PbS Nanodots For Ultraviolet Radiation Dosimetry

Lead sulfide (PbS) nanodots in Zirconia (ZrO2) thin film matrix (ZrO2:PbS films) were investigated for UV radiation dosimetry purposes. Samples were fabricated using sol-gel technique. ZrO2:PbS films were irradiated with UV light with wavelengths 250 – 400 nm during 50 minutes. Photoelectron emission spectra of ZrO2:PbS films were recorded and band structure for nonradiated and UV irradiated samples was calculated. It was found that quantity of localized states decreased after UV irradiation while density of localized states was dependent on concentration of PbS nanodots. The observed changes in band structure of ZrO2:PbS films after UV irradiation suggest that the films may be considered a…

research product