0000000000190223
AUTHOR
A. Katashev
Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles
In this work, the properties of hydroxyapatite (HAP) nanoparticles (NPs) have been studied both theoretically and experimentally focusing on computational analysis. HAP is widely used to fabricate implants, for drug delivery, etc. The physical properties of the nanosized HAP particles play an important role in the interaction with cells in the human body and are of great interest. Computer simulation was employed to understand the properties of HAP clusters (Ca(5)(PO(4))(3)OH) including formation energies, dipole moments and polarization (surface charges) by molecular mechanics (MM + , OPLS) and mostly by quantum semi-empirical Hartree-Fock (PM3) methods. The size of the simulated cluster i…
Atomic Force Microscopy Study of Yeast Cells Influenced by High Voltage Electrical Discharge
Human cells are the eukaryotic ones. Simulation of wide-spectrum electromagnetic radiation influence on eukaryotic cells was performed with yeast which is usually used now in molecular biological and medical biological investigations as the ideal model of eukaryotic system. The aim of the research was to observe possible induced alterations of the cell morphology. Atomic force microscopy (AFM) and electron scanning microscopy (ESM) have been applied to image the surface of cells exposed to electromagnetic radiation.