Editorial: Pathophysiologic Insights From Biomarker Studies in Neurological Disorders
Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans.
Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question w…
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
Genome-wide study in Germans identifies four novel multiple sclerosis risk genes and confirms already known gene loci.
The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells.
Two-pore domain potassium (K2P) channels influence basic cellular parameters such as resting membrane potential, cellular excitability, or intracellular Ca2+-concentration [Ca2+]i. While the physiological importance of K2P channels in different organ systems (e.g., heart, central nervous system, or immune system) has become increasingly clear over the last decade, their expression profile and functional role in skeletal muscle cells (SkMC) remain largely unknown. The mouse SkMC cell line C2C12, wild-type mouse muscle tissue, and primary mouse muscle cells (PMMs) were analyzed using quantitative PCR, Western blotting, and immunohistochemical stainings as well as functional analysis includin…
NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study
Background: Easily accessible biomarkers enabling the identification of those patients with multiple sclerosis (MS) who will accumulate irreversible disability in the long term are essential to guide early therapeutic decisions. We here examine the utility of serum neurofilament light chain (sNfL) for forecasting relapse-free disability progression and conversion to secondary progressive MS (SPMS) in the prospective Neurofilament and longterm outcome in MS (NaloMS) cohort. Methods: The predictive ability of sNfL at Baseline and sNfL follow-up (FU)/ Baseline (BL) ratio with regard to disability progression was assessed within a development cohort (NaloMS, n=196 patients with relapsing-remitt…
Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
Background/aims Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. Methods We tested t…
14-3-3 Proteins regulate K2P5.1 surface expression on T lymphocytes
K2P5.1 channels (also called TASK-2 or KCNK5) have already been shown to be relevant in the pathophysiology of autoimmune disease since they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P5.1 channels. We show that a non-classical 14-3-3 co…
The quality of cortical network function recovery depends on localization and degree of axonal demyelination
AbstractMyelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced…
Treatment approaches to patients with multiple sclerosis and coexisting autoimmune disorders.
The past decades have yielded major therapeutic advances in many autoimmune conditions – such as multiple sclerosis (MS) – and thus ushered in a new era of more targeted and increasingly potent immunotherapies. Yet this growing arsenal of therapeutic immune interventions has also rendered therapy much more challenging for the attending physician, especially when treating patients with more than one autoimmune condition. Importantly, some therapeutic strategies are either approved for several autoimmune disorders or may be repurposed for other conditions, therefore opening new curative possibilities in related fields. In this article, we especially focus on frequent and therapeutically rele…
Targeting B cells in relapsing–remitting multiple sclerosis: from pathophysiology to optimal clinical management
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that is caused by an autoimmune response against central nervous system (CNS) structures. Traditionally considered a T-cell-mediated disorder, the contribution of B cells to the pathogenesis of MS has long been debated. Based on recent promising clinical results from CD20-depleting strategies by three therapeutic monoclonal antibodies in clinical phase II and III trials (rituximab, ocrelizumab and ofatumumab), targeting B cells in MS is currently attracting growing interest among basic researchers and clinicians. Many questions about the role of B and plasma cells in MS remain still unanswered, ranging from the role of…
A role for TASK2 channels in the human immunological synapse.
The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune p…
Successful Replication of GWAS Hits for Multiple Sclerosis in 10,000 Germans Using the Exome Array
Genome-wide association studies (GWAS) successfully identified various chromosomal regions to be associated with multiple sclerosis (MS). The primary aim of this study was to replicate reported associations from GWAS using an exome array in a large German study. German MS cases (n = 4,476) and German controls (n = 5,714) were genotyped using the Illumina HumanExome v1-Chip. Genotype calling was performed with the Illumina Genome Studio(TM) Genotyping Module, followed by zCall. Single-nucleotide polymorphisms (SNPs) in seven regions outside the human leukocyte antigen (HLA) region showed genome-wide significant associations with MS (P values < 5 × 10(-8) ). These associations have been repor…
Ocrelizumab initiation in patients with MS
ObjectiveTo provide first real-world experience on patients with MS treated with the B cell–depleting antibody ocrelizumab.MethodsWe retrospectively collected data of patients who had received at least 1 treatment cycle (2 infusions) of ocrelizumab at 3 large neurology centers. Patients' characteristics including premedication, clinical disease course, and documented side effects were analyzed.ResultsWe could identify 210 patients (125 women, mean age ± SD, 42.1 ± 11.4 years) who had received ocrelizumab with a mean disease duration of 7.3 years and a median Expanded Disability Status Scale score of 3.75 (interquartile range 2.5–5.5; range 0–8). Twenty-six percent of these patients had a pr…
β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells
Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…
Ocrelizumab Extended Interval Dosing in Multiple Sclerosis in Times of COVID-19.
ObjectiveTo evaluate the clinical consequences of extended interval dosing (EID) of ocrelizumab in relapsing-remitting multiple sclerosis (RRMS) during the coronavirus disease 2019 (COVID-19) pandemic.MethodsIn our retrospective, multicenter cohort study, we compared patients with RRMS on EID (defined as ≥4-week delay of dose interval) with a control group on standard interval dosing (SID) at the same period (January to December 2020).ResultsThree hundred eighteen patients with RRMS were longitudinally evaluated in 5 German centers. One hundred sixteen patients received ocrelizumab on EID (median delay [interquartile range 8.68 [5.09–13.07] weeks). Three months after the last ocrelizumab in…
Increase of Substance P Concentration in Saliva after Pharyngeal Electrical Stimulation in Severely Dysphagic Stroke Patients – an Indicator of Decannulation Success?
Background/Aims: Substance P (SP) is a neuropeptide, likely acting as a neurotransmitter in the pharyngeal mucosa enhancing the swallow and cough reflex. Pharyngeal Electrical Stimulation (PES) induces a temporary increase of salivary SP levels in healthy adults. Previous evidence suggests that post-stroke dysphagia is related to reduced SP levels. Here, we investigated the effects of PES on SP levels in severely dysphagic stroke patients and a possible link between increase of SP and treatment success. Methods: 23 tracheotomized stroke patients who could not be decannulated due to severe and persisting dysphagia according to endoscopic evaluation received PES for 10 minutes a day over thre…
PB3. Pharyngeal Electrical Stimulation in neurointensive care patients suffering from severe post-stroke dysphagia – Post stimulation increase of salivary substance P level may indicate treatment success
Introduction Dysphagia is one of the most important and prognostically relevant complications of acute stroke. Pharyngeal Electrical Stimulation (PES) is a treatment device that enhances cortical reorganization for the restoration of swallowing function after cerebral injury. Furthermore, it was shown that PES leads to a temporary increase of Substance P (SP) level in saliva but not serum in healthy adults. The neuropeptide SP likely acts as a neurotransmitter in the pharyngeal mucosa and enhances the swallow and cough reflex. Post-stroke dysphagia may be related to reduced SP-levels. Here, we investigated the association of PES treatment in neurointensive care patients suffering from sever…
Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells.…
Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis
Objective White matter atrophy occurs independently of lesions in multiple sclerosis. In contrast to lesion detection, the quantitative assessment of white matter atrophy in individual patients has been regarded as a major challenge. We therefore tested the hypothesis that white matter atrophy (WMA) is present at the very beginning of multiple sclerosis (MS) and in virtually each individual patient. To find a new sensitive and robust marker for WMA we investigated the relationship between cortical surface area, white matter volume (WMV), and whole-brain-surface-averaged rectified cortical extrinsic curvature. Based on geometrical considerations we hypothesized that cortical curvature increa…
Substance P Saliva Reduction Predicts Pharyngeal Dysphagia in Parkinson's Disease
Introduction: Although patients with Parkinson's disease (PD) often suffer from oropharyngeal dysphagia, knowledge about the underlying pathophysiological mechanisms is limited. Substance P (SP) is a localization-independent neurotransmitter of the entire nervous system. Reduced levels of SP were found in saliva of patients with impaired cough reflex and in advanced stages of PD. The aim of the study was to investigate SP in PD patients in order to gain further insights into the underlying pathophysiology of PD-related dysphagia and to evaluate the potential of SP as a biomarker for early dysphagia. Methods: Flexible endoscopic evaluation of swallowing (FEES) was used to objectively assess …
Mini-Review: Two Brothers in Crime – The Interplay of TRESK and TREK in Human Diseases
Abstract TWIK-related spinal cord potassium (TRESK) and TWIK-related potassium (TREK) channels are both subfamilies of the two-pore domain potassium (K2P) channel group. Despite major structural, pharmacological, as well as biophysical differences, emerging data suggest that channels of these two subfamilies are functionally more closely related than previously assumed. Recent studies, for instance, indicate an assembling of TRESK and TREK subunits, leading to the formation of heterodimeric channels with different functional properties compared to homodimeric ones. Formation of tandems consisting of TRESK and TREK subunits might thus multiply the functional diversity of both TRESK and TREK …