0000000000190382

AUTHOR

Vincent Jeudy

showing 4 related works from this author

Nucleation and Collapse of the Superconducting Phase in Type-I Superconducting Films

2005

The phase transition between the intermediate and normal states in type-I superconducting films is investigated using magneto-optical imaging. Magnetic hysteresis with different transition fields for collapse and nucleation of superconducting domains is found. This is accompanied by topological hysteresis characterized by the collapse of circular domains and the appearance of lamellar domains. Magnetic hysteresis is shown to arise from supercooled and superheated states. Domain-shape instability resulting from long-range magnetic interaction accounts well for topological hysteresis. Connection with similar effects in systems with long-range magnetic interactions is emphasized.

Phase transitionnucleationNucleationFOS: Physical sciencesGeneral Physics and Astronomytopological hysteresis02 engineering and technology01 natural sciencesInstabilitySuperconductivity (cond-mat.supr-con)74.25.Ha 05.65.+b 75.70.KwCondensed Matter::SuperconductivityPhase (matter)0103 physical sciences010306 general physicsSupercoolingSuperconductivityPhysicsCondensed matter physicsCondensed Matter - Superconductivitysuperconductivitydomain pattern021001 nanoscience & nanotechnologyMagnetic hysteresis[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con]Hysteresisphase transition0210 nano-technologyPhysical Review Letters
researchProduct

Normal-state bubbles and lamellae in type-I superconductors

2005

International audience; We report an extensive study of the formation of normal-state domains in type-I superconductors. Domain patterns are first considered theoretically. The magnetic interaction between domains is described in the framework of the ``current-loop'' model: the intermediate state is modeled by a set of loops of screening current encircling the domains and interacting as in the free space. This system is shown to be formally equivalent to a set of uniformly magnetized domains. An extension of the current-loop model is proposed to take into account the constraint of the magnetic shielding by the superconducting regions. We determine the free energy of a hexagonal array of cyl…

PhysicsSuperconductivityMagnetic domainCondensed matter physicsCondensed Matter Physics01 natural sciences010305 fluids & plasmasElectronic Optical and Magnetic MaterialsMagnetic fieldMagnetizationLattice (order)0103 physical sciencesVolume fractionElectromagnetic shieldingIntermediate state[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physics
researchProduct

Unusual domain-wall motion in ferromagnetic semiconductor films with tetragonal anisotropy

2009

International audience; Magnetic field-driven domain-wall propagation in the flow regime is investigated in (Ga, Mn) As ferromagnetic semiconductor layers. Square-shape magnetic domains with an unexpected orientation of their edges, at pi/8 with respect to the anisotropy axes, are found. This is shown to arise from the effect of tetragonal magnetic anisotropy on domain-wall dynamics. Using a one-dimensional model for domain-wall motion and modeling domain growth by contour dynamics the shape and orientation of domains and their field range for existence are well reproduced. These results point to the key role of the vectorial nature of the order parameter in the dynamics of ferromagnetic do…

010302 applied physicsPhysicsCondensed matter physicsMagnetic domainDemagnetizing fieldCondensed Matter PhysicsMagnetocrystalline anisotropy01 natural sciencesMagnetic susceptibilityElectronic Optical and Magnetic MaterialsMagnetic anisotropyDomain wall (magnetism)Magnetic shape-memory alloy0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Single domain010306 general physicsPhysical Review B
researchProduct

Current-induced fingering instability in magnetic domain walls

2015

The shape instability of magnetic domain walls under current is investigated in a ferromagnetic (Ga,Mn)(As,P) film with perpendicular anisotropy. Domain wall motion is driven by the spin transfer torque mechanism. A current density gradient is found either to stabilize domains with walls perpendicular to current lines or to produce finger-like patterns, depending on the domain wall motion direction. The instability mechanism is shown to result from the non-adiabatic contribution of the spin transfer torque mechanism.

Materials scienceMagnetic domainCiencias FísicasINSTABILITYFOS: Physical sciencesINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologySPINTRONIC01 natural sciencesInstabilityPhysics::Fluid Dynamics//purl.org/becyt/ford/1 [https]//purl.org/becyt/ford/2.10 [https]0103 physical sciencesPerpendicular[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsNanotecnologíaCondensed Matter - Materials ScienceCondensed matter physicsSpin-transfer torqueMaterials Science (cond-mat.mtrl-sci)//purl.org/becyt/ford/1.3 [https]Nano-materiales021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAstronomíaDomain wall (magnetism)Ferromagnetism//purl.org/becyt/ford/2 [https]Current (fluid)0210 nano-technologyCurrent densityCIENCIAS NATURALES Y EXACTAS
researchProduct