6533b7d2fe1ef96bd125f752

RESEARCH PRODUCT

Nucleation and Collapse of the Superconducting Phase in Type-I Superconducting Films

Catherine GourdonAndrejs CebersVincent Jeudy

subject

Phase transitionnucleationNucleationFOS: Physical sciencesGeneral Physics and Astronomytopological hysteresis02 engineering and technology01 natural sciencesInstabilitySuperconductivity (cond-mat.supr-con)74.25.Ha 05.65.+b 75.70.KwCondensed Matter::SuperconductivityPhase (matter)0103 physical sciences010306 general physicsSupercoolingSuperconductivityPhysicsCondensed matter physicsCondensed Matter - Superconductivitysuperconductivitydomain pattern021001 nanoscience & nanotechnologyMagnetic hysteresis[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con]Hysteresisphase transition0210 nano-technology

description

The phase transition between the intermediate and normal states in type-I superconducting films is investigated using magneto-optical imaging. Magnetic hysteresis with different transition fields for collapse and nucleation of superconducting domains is found. This is accompanied by topological hysteresis characterized by the collapse of circular domains and the appearance of lamellar domains. Magnetic hysteresis is shown to arise from supercooled and superheated states. Domain-shape instability resulting from long-range magnetic interaction accounts well for topological hysteresis. Connection with similar effects in systems with long-range magnetic interactions is emphasized.

https://doi.org/10.1103/physrevlett.96.087002