Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans.
Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question w…
Sex-specific signatures of intrinsic hippocampal networks and regional integrity underlying cognitive status in multiple sclerosis
Abstract The hippocampus is an anatomically compartmentalized structure embedded in highly wired networks that are essential for cognitive functions. The hippocampal vulnerability has been postulated in acute and chronic neuroinflammation in multiple sclerosis, while the patterns of occurring inflammation, neurodegeneration or compensation have not yet been described. Besides focal damage to hippocampal tissue, network disruption is an important contributor to cognitive decline in multiple sclerosis patients. We postulate sex-specific trajectories in hippocampal network reorganization and regional integrity and address their relationship to markers of neuroinflammation, cognitive/memory per…
White Matter Pathology
Gray matter integrity predicts white matter network reorganization in multiple sclerosis
Abstract Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease leading to gray matter atrophy and brain network reconfiguration as a response to increasing tissue damage. We evaluated whether white matter network reconfiguration appears subsequently to gray matter damage, or whether the gray matter degenerates following alterations in white matter networks. MRI data from 83 patients with clinically isolated syndrome and early relapsing–remitting MS were acquired at two time points with a follow‐up after 1 year. White matter network integrity was assessed based on probabilistic tractography performed on diffusion‐weighted data using graph theoretical analyses. We ev…
Linking Microstructural Integrity and Motor Cortex Excitability in Multiple Sclerosis
Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey and white matter damage with cortical excitability abnormalities. We applied advanced diffusion imaging with 3T magnetic resonance tomography for neurite orientation dispersion and density imaging (NODDI), as well as diffusion tensor imaging (DTI) in 50 MS patients and 49 age-matched healthy controls to quantify microstructural integrity of the motor system. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. As measures of cognitive-motor performance, we conducted neuropsychological assessments including the Nine-Hole Peg Test, Trail Makin…
Gray matter network reorganization in multiple sclerosis from 7‐Tesla and 3‐Tesla MRI data
[Objective]: The objective of this study was to determine the ability of 7T‐MRI for characterizing brain tissue integrity in early relapsing‐remitting MS patients compared to conventional 3T‐MRI and to investigate whether 7T‐MRI improves the performance for detecting cortical gray matter neurodegeneration and its associated network reorganization dynamics.
Deficient Interhemispheric Connectivity Underlies Movement Irregularities in Parkinson’s Disease
Background: Movement execution is impaired in patients with Parkinson’s disease. Evolving neurodegeneration leads to altered connectivity between distinct regions of the brain and altered activity at interconnected areas. How connectivity alterations influence complex movements like drawing spirals in Parkinson’s disease patients remains largely unexplored. Objective: We investigated whether deteriorations in interregional connectivity relate to impaired execution of drawing. Methods: Twenty-nine patients and 31 age-matched healthy control participants drew spirals with both hands on a digital graphics tablet, and the regularity of drawing execution was evaluated by sample entropy. We recor…
Covarying patterns of white matter lesions and cortical atrophy predict progression in early MS
ObjectiveWe applied longitudinal 3T MRI and advanced computational models in 2 independent cohorts of patients with early MS to investigate how white matter (WM) lesion distribution and cortical atrophy topographically interrelate and affect functional disability.MethodsClinical disability was measured using the Expanded Disability Status Scale Score at baseline and at 1-year follow-up in a cohort of 119 patients with early relapsing-remitting MS and in a replication cohort of 81 patients. Covarying patterns of cortical atrophy and baseline lesion distribution were extracted by parallel independent component analysis. Predictive power of covarying patterns for disability progression was tes…
Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts.
Abstract Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation an…
Dissecting task-specific plasticity capacity in patients with multiple sclerosis with transcranial magnetic stimulation.
Evidence for a white matter lesion size threshold to support the diagnosis of relapsing remitting multiple sclerosis
Abstract Background The number of white matter lesions (WML) in brain MRI is the most established paraclinical tool to support the diagnosis of multiple sclerosis (MS) and to monitor its course. Diagnostic criteria have stipulated a minimum detectable diameter of 3 mm per WML, although this threshold is not evidence-based. We aimed to provide a rationale for a WML size threshold for three-dimensional MRI sequences at 3 T by comparing patients with relapsing-remitting MS (RRMS) to control subjects (CS). Methods We analyzed MR images from two cohorts, obtained at scanners from two different vendors, each comprising patients with RRMS and CS. Both cohorts were examined with FLAIR and T1w seque…