0000000000190820
AUTHOR
Paul Sardini
On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure
International audience; Abstract Within the framework of geological repositories for radioactive waste, structural concretes must be adapted to the underground chemical conditions. CEM I cement-based materials are characterised by high pH that may produce an alkaline plume in the near-field of the repository. In order to avoid this problem, low-pH cements have been designed. This study compares the physico-chemical behaviour of a low-pH material with a CEM I cement paste, both being subjected to leaching by an aqueous solution. An original experimental setup was designed to reproduce the underground conditions using a specific CO2 regulation device. Under these conditions, the low-pH materi…
Pore-space characterization of an altered tonalite by X-ray computed microtomography and the14C-labeled-polymethylmethacrylate method
[1] The structure of geological materials strongly affects migration processes that take place in them and are also important in their weathering and alteration processes. Further information of that structure will also be important for many applications that involve geological materials. The emphasis of this study was thus to characterize the pore structure and porosity of altered tonalite by combining different measuring techniques: X-ray tomography, the14C-polymethylmethacrylate method, electron microscopy, and argon pycnometry. Intragranular porosities were determined using chemical staining of rock surfaces. Three-dimensional distributions of minerals and porosities were evaluated with…
Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy
The spatial porosity and mineral distribution of geological materials strongly affects transport processes in them. X-ray micro computed tomography (X-mu CT) has proven to be a powerful tool for characterizing the spatial mineral distribution of geological samples in 3-D. However, limitations in resolution prevent an accurate characterization of pore space especially for tight crystalline rock samples and 2-D methods such as C-14-polymethylmethacrylate (C-14-PMMA) autoradiography and scanning electron microscopy (SEM) are needed. The spatial porosity and mineral distributions of tight crystalline rock samples from Aspo, Sweden, and Olkiluoto, Finland, were studied here. The X-mu CT were use…