0000000000190827

AUTHOR

Michael Parker

0000-0002-8466-7317

A TEST of the NATURE of the FE K LINE in the NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analys…

research product

A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar

We present $\emph{NuSTAR}$ observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, $F_{\mathrm{Edd}}$, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K$_{\alpha}$ line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be $R_{in}=1.03\pm0.03$ ISCO (innermost stable circular orbit) assuming a dimensionless spin parameter $a_{*}=cJ/GM^{2}=0.0$, and $R_{in}=1.08\pm0.06$ ISCO for $a_{*}=0.3$ (errors quoted at 1 $\sig…

research product

Quasi-periodic dipping in the ultraluminous X-ray source, NGC 247 ULX-1

Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a challenge, but the observed timing properties provide insight into the compact object and details of the geometry and accretion processes. Here we report a timing analysis for an 800 ks XMM-Newton campaign on the supersoft ultraluminous X-ray source, NGC 247 ULX-1. Deep and frequent dips occur in the X-ray light curve, with the amplitude increasing with increasing energy band. Power spectra and coherence analysis reveals the dipping preferential…

research product

The nature of the extreme X-ray variability in the NLS1 1H 0707-495

We examine archival XMM-Newton data on the extremely variable narrow-line Seyfert 1 (NLS1) active galactic nucleus (AGN) 1H 0707-495. We construct fractional excess variance (Fvar) spectra for each epoch, including the recent 2019 observation taken simultaneously with eROSITA. We explore both intrinsic and environmental absorption origins for the variability in different epochs, and examine the effect of the photoionised emission lines from outflowing gas. In particular, we show that the unusual soft variability first detected by eROSITA in 2019 is due to a combination of an obscuration event and strong suppression of the variance at 1 keV by photoionised emission, which makes the variance …

research product

Wind-luminosity evolution in NLS1 AGN 1H 0707−495

Ultra-fast outflows (UFOs) have been detected in the high-quality X-ray spectra of a number of active galactic nuclei (AGN) with fairly high accretion rates and are thought to significantly contribute to the AGN feedback. After a decade of dedicated study, their launching mechanisms and structure are still not well understood, but variability techniques may provide useful constraints. In this work, therefore, we perform a flux-resolved X-ray spectroscopy on a highly accreting and variable NLS1 AGN, 1H 0707-495, using all archival XMM-Newton observations to study the structure of the UFO. We find that the wind spectral lines weaken at higher luminosities, most likely due to an increasing ion…

research product