0000000000191464

AUTHOR

Thomas E. Davies

0000-0002-8930-5067

showing 4 related works from this author

The key role of nanocasting in gold-based Fe2 O3 nanocasted catalysts for oxygen activation at the metal-support interface

2019

5 Tablas.- 10 Figuras.- This is the peer reviewed version of the following article: The key role of nanocasting in gold‐based Fe2O3 nanocasted catalysts for oxygen activation at the metal‐support interface, ChemCatChem 11: 1915-1927 (2019), which has been published in final form at http://dx.doi.org/10.1002/cctc.201900210. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Materials scienceOxideIron oxide010402 general chemistry01 natural sciencesCatalysisCatalysislaw.inventionInorganic ChemistryMetalPropanechemistry.chemical_compoundlawOxidationCalcinationNanocastingPhysical and Theoretical Chemistry010405 organic chemistryOrganic ChemistryMicroporous materialMesoporous materials0104 chemical scienceschemistryChemical engineeringColloidal goldvisual_artvisual_art.visual_art_mediumGoldMesoporous material
researchProduct

Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion

2011

Gold supported on nickel cerium oxide catalysts (Ni–Ce–O) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. High surface area Ni–Ce–O catalysts were synthesized using a very simple evaporation method, where cerium and nickel salts were evaporated in the presence of a mixture of methanol and oxalic acid. Gold catalysts were prepared following a deposition–precipitation method. A very efficient catalyst for the oxidation of propane, in terms of both activity and selectivity, was obtained. This high activity has been related to the high surface area of the catalyst (and therefore to the presence of more active sites ava…

inorganic chemicalschemistry.chemical_classificationCerium oxideorganic chemicalsGeneral Chemical EngineeringInorganic chemistryOxalic acidchemistry.chemical_elementCatalytic combustionGeneral ChemistryIndustrial and Manufacturing EngineeringCatalysisCeriumchemistry.chemical_compoundNickelHydrocarbonCatalytic oxidationchemistryEnvironmental Chemistryheterocyclic compoundsChemical Engineering Journal
researchProduct

Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route.

2011

Gold deposited on a cobalt oxide with high surface area (138 m2 g−1), obtained through a nanocasting route using a siliceous KIT-6 mesoporous material as a hard template, has demonstrated high activity for the total oxidation of propane and toluene, and ambient temperature CO oxidation. The addition of gold promotes the activity when compared to a gold-free Co3O4 catalyst prepared using the same nanocasting technique. The enhanced catalytic activity when gold is present has been explained for the deep oxidation of propane and toluene in terms of the improved reducibility of cobalt oxide when gold is added, rather than to the intrinsic activity of metallic gold particles. The improved behavi…

Environmental EngineeringMaterials scienceSurface PropertiesHealth Toxicology and MutagenesisInorganic chemistryCatalysisCatalysisMetalchemistry.chemical_compoundPropaneEnvironmental ChemistryHigh surface areaNanotechnologyWaste Management and DisposalCobalt oxidePollutantOxidesCobaltPollutionToluenechemistryvisual_artvisual_art.visual_art_mediumEnvironmental PollutantsGoldMesoporous materialOxidation-ReductionJournal of hazardous materials
researchProduct

Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts

2008

Abstract Supported and unsupported nanocrystalline cobalt oxides have been shown to be extremely efficient catalysts for the total oxidation of propane. Total conversion with a high stability has been achieved at reaction temperatures as low as 250 °C. In the present work, a comparison between the catalytic performance of bulk and alumina-supported nanocrystalline cobalt oxide catalysts has been made. The influence of crystallite size, nature of the support (alpha, gamma and mesoporous alumina) and cobalt loading, has been probed. Unsupported cobalt oxide catalysts were more active than any supported cobalt oxide catalysts. The catalytic activity was mainly dependent on the crystallite size…

inorganic chemicalsMaterials scienceProcess Chemistry and TechnologyInorganic chemistrychemistry.chemical_elementBinary compoundHeterogeneous catalysisCatalysisNanocrystalline materialCatalysischemistry.chemical_compoundchemistryAluminium oxideMesoporous materialCobaltCobalt oxideGeneral Environmental ScienceApplied Catalysis B: Environmental
researchProduct