0000000000191474

AUTHOR

Ennio Poretti

showing 10 related works from this author

The B0.5 IVe CoRoT target HD 49330. II. Spectroscopic ground-based observations

2009

International audience; Context: We present spectroscopic ground-based observations of the early Be star HD 49330 obtained simultaneously with the CoRoT-LRA1 run just before the burst observed in the CoRoT data. Aims: Ground-based spectroscopic observations of the early Be star HD 49330 obtained during the precursor phase and just before the start of an outburst allow us to disantangle stellar and circumstellar contributions and identify modes of stellar pulsations in this rapidly rotating star. Methods: Time series analysis (TSA) is performed on photospheric line profiles of He I and Si III by means of the least squares method. Results: We find two main frequencies f1 = 11.86 c d-1 and f2 …

PhysicsBe starPhase (waves)AstronomyAstronomy and AstrophysicsContext (language use)AstrophysicsStar (graph theory)StarsSpace and Planetary ScienceEmission spectrumHigh order[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Line (formation)
researchProduct

Photometric and spectroscopic variability of the B5IIIe star HD 171219

2017

We analyzed the star HD 171219, one of the relatively bright Be stars observed in the seismo field of the CoRoT satellite, in order to determine its physical and pulsation characteristics. Classical Be stars are main-sequence objects of mainly B-type, whose spectra show, or have shown at some epoch, Balmer lines in emission and an infrared excess. Both characteristics are attributed to an equatorially concentrated circumstellar disk fed by non-periodic mass-loss episodes (outbursts). Be stars often show nonradial pulsation gravity modes and, as more recently discovered, stochastically excited oscillations. Applying the CLEANEST algorithm to the high-cadence and highly photometrically precis…

Stars: individual: HD 171219Stars: emission-line BeAstrophysics::High Energy Astrophysical PhenomenaFísica matemàticaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral lineStars: early-typesymbols.namesakeearly-type [Stars]Stars: oscillationsStars: rotation0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsVariation (astronomy)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSLine (formation)Physics[PHYS]Physics [physics]Infrared excess010308 nuclear & particles physicsASTROFÍSICA ESTELARBalmer seriesFísicaAstronomy and AstrophysicsoscillationsStars: rotation [Stars]Light curveCiència EnsenyamentStarsAstrophysics - Solar and Stellar Astrophysicsindividual: HD 171219 [Stars]emission-line Be [Stars]13. Climate actionSpace and Planetary ScienceExcited statesymbolsAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Optical and ultraviolet pulsed emission from an accreting millisecond pulsar

2021

Ambrosino, F., et al.

Angular momentum010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaMagnetosphereFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesLuminosityNeutron starsSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsAccretion (astrophysics)Particle accelerationNeutron starAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107-5240

2020

Context. The vast majority of the known stars of ultra low metallicity ([Fe=H] >-4:5) are known to be enhanced in carbon, and belong to the 'low-carbon band' (A(C) = log(C=H) + 12 7:6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metalpoor star discovered, HE 0107-5240, is also enhanced in carbon and belongs to the 'low-carbon band'. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer fro…

[PHYS]Physics [physics]Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsBinary numberabundances [Galaxy]Astronomy and AstrophysicsAstrophysics01 natural sciencesGalactic haloEspressospectroscopic [Binaries]Space and Planetary Scienceabundances [Stars]0103 physical scienceshalo [Galaxy]Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Short-term variations in Be stars observed by the CoRoT and Kepler space missions

2010

AbstractThe corot and kepler space missions are collecting very high-precision long-duration photometric data of many Be stars, allowing us to better understand the origin of their short-term variability and the link between these variations and the Be phenomenon. In this paper, we present a brief summary of the results obtained in the analysis of several Be stars observed with corot in terms of pulsations. In addition, we show that variations of the Be star HD 175869 can be explained as two active regions separated by 150 degrees or as unstable pulsating modes in a star with an extensive mixing in radiative layers corresponding to a core overshooting of 0.35Hp. A preliminary study of the p…

PhysicsStarsSpace and Planetary ScienceK-type main-sequence starAstronomyAstronomy and AstrophysicsAstrophysicsHerbig Ae/Be star[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Space explorationTerm (time)
researchProduct

Neutral Iron Emission Lines From The Day-side Of KELT-9b -- The GAPS Programme With HARPS-N At TNG XX

2020

We present the first detection of atomic emission lines from the atmosphere of an exoplanet. We detect neutral iron lines from the day-side of KELT-9b (Teq $\sim$ 4, 000 K). We combined thousands of spectrally resolved lines observed during one night with the HARPS-N spectrograph (R $\sim$ 115, 000), mounted at the Telescopio Nazionale Galileo. We introduce a novel statistical approach to extract the planetary parameters from the binary mask cross-correlation analysis. We also adapt the concept of contribution function to the context of high spectral resolution observations, to identify the location in the planetary atmosphere where the detected emission originates. The average planetary li…

astro-ph.SR010504 meteorology & atmospheric sciencesContinuum (design consultancy)FOS: Physical sciencesContext (language use)Astrophysics01 natural sciencesExoplanet atmospheres; Exoplanet atmospheric composition; High resolution spectroscopyAtmosphereHigh resolution spectroscopy0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrumSpectral resolution010303 astronomy & astrophysicsSpectrographInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsEarth and Planetary Astrophysics (astro-ph.EP)Settore FIS/05Astronomy and AstrophysicsExoplanetAstrophysics - Solar and Stellar AstrophysicsExoplanet atmospheric composition13. Climate actionSpace and Planetary Scienceastro-ph.EPAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Earth and Planetary AstrophysicsExoplanet atmospheresastro-ph.IM
researchProduct

Stochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452

2012

International audience; Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD 51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra a…

starsBe -stars010504 meteorology & atmospheric sciencesBe starK-type main-sequence staroscillations -starsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsrotation01 natural sciences0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsStellar structureindividual010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences[PHYS]Physics [physics]PhysicsASTROFÍSICA ESTELARStellar rotationFlare starAstronomyAstronomy and AstrophysicsLight curveESPECTROSCOPIAHD 51452 -starsStarsT Tauri star13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysicsemission-line[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

HADES RV programme with HARPS-N at TNG: XII. The abundance signature of M dwarf stars with planets

2020

[Context] Most of our current knowledge on planet formation is still based on the analysis of main sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M dwarfs hosting planets are still missing.

astro-ph.SRStellar massMetallicityFOS: Physical sciencesTechniques: spectroscopicStars: late-typeAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesspectroscopic [Techniques]Settore FIS/05 - Astronomia E AstrofisicaPrimary (astronomy)PlanetAbundance (ecology)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsEarth and Planetary Astrophysics (astro-ph.EP)Physics010308 nuclear & particles physicsStars: abundancesGiant planetAstronomy and Astrophysicsastro-ph.SR; astro-ph.SR; astro-ph.EPRadial velocityStarsPlanetary systemsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Scienceabundances [Stars]late-type [Stars]astro-ph.EPAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct

The GAPS Programme with HARPS-N at TNG: . Atmospheric Rossiter-McLaughlin effect and improved parameters of KELT-9b

2019

In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, VsinI$\sim$110 km/s) with the HARPS-N spectrograph at the TNG. In this work we analyse the spectra and the extracted radial velocities (RVs), to constrain the physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar RVs with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra an…

010504 meteorology & atmospheric sciencesRossiter–McLaughlin effectFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineAtmospheretechniques: radial velocities0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsplanetary systems010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)planets and satellites: atmospheresPhysicsSettore FIS/05Astronomy and AstrophysicsPlanetary systemstars: individual: KELT-9ExoplanetRadial velocityAmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsPlanetary masstechniques: spectroscopicAstrophysics - Earth and Planetary Astrophysics
researchProduct

The pulsations of the B5IVe star HD 181231 observed with CoRoT and ground-based spectroscopy

2009

International audience; Context: HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during ~5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims: By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods: The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier…

PhysicsPhotosphereAstronomyAstronomy and AstrophysicsContext (language use)AstrophysicsStar (graph theory)Light curveMagnetic fieldStars[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrum[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SpectroscopyAstronomy & Astrophysics
researchProduct