0000000000192148

AUTHOR

Eero Mervaala

Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling

Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient i…

research product

VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart

Abstract Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain‐ and loss‐of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor‐B (VEGF‐B) in the heart. A cardiomyocyte‐specific VEGF‐B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia‐reperfusion. VEGF‐B increased VEGF signals via VEGF receptor‐2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, …

research product

VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection

Congestive heart failure is one of the leading causes of disability in long-term survivors of cancer. The anthracycline antibiotic doxorubicin (DOX) is used to treat a variety of cancers, but its utility is limited by its cumulative cardiotoxicity. As advances in cancer treatment have decreased cancer mortality, DOX-induced cardiomyopathy has become an increasing problem. However, the current means to alleviate the cardiotoxicity of DOX are limited. We considered that vascular endothelial growth factor-B (VEGF-B), which promotes coronary arteriogenesis, physiological cardiac hypertrophy, and ischemia resistance, could be an interesting candidate for prevention of DOX-induced cardiotoxicity …

research product

Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes

AbstractDoxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin indu…

research product