6533b7d4fe1ef96bd126353b

RESEARCH PRODUCT

VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart

Zhen W. ZhuangRuslan HlushchukMarius R. RobciucKari AlitaloValentin DjonovSanna HellbergJuhani KnuutiMarkus RäsänenLauri EklundAndrey AnisimovRiikka KiveläMiia TaavitsainenAntti SarasteJan H.n. LindemanMichael SimonsMikko I. MäyränpääMikko I. MäyränpääJohanna M.u. SilvolaJuha J. HulmiMaija BryEero Mervaala

subject

VEGF‐Bmedicine.medical_specialtyMedicine (General)AngiogenesiseducationMOUSE HEARTIschemiaVEGF-B610 Medicine & healthmTORC1ischemiaBiologyQH426-470CONTRIBUTESchemistry.chemical_compoundangiogenesisR5-920CARDIAC-FUNCTIONInternal medicinemedicineGeneticsFAILUREta318Myocardial infarctionFATTY-ACID UPTAKEREPERFUSION INJURY610 Medicine & healthProtein kinase BMYOCARDIAL HYPERTROPHYAMPKta3121medicine.diseaseCell biologyARTERIOGENESISVascular endothelial growth factorMICEEndocrinologychemistry3121 General medicine internal medicine and other clinical medicineendothelial cellMolecular Medicine3111 BiomedicineReperfusion injurymetabolism

description

Abstract Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain‐ and loss‐of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor‐B (VEGF‐B) in the heart. A cardiomyocyte‐specific VEGF‐B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia‐reperfusion. VEGF‐B increased VEGF signals via VEGF receptor‐2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF‐B transgenic, gene‐targeted or wildtype rats. Importantly, we also show that VEGF‐B expression is reduced in human heart disease. Our data indicate that VEGF‐B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease.

10.1002/emmm.201303147https://boris.unibe.ch/54048/1/307.full.pdf