0000000000192149

AUTHOR

Norbert Koch

0000-0002-6042-6447

Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains

Here we present the formation of predominantly sp-coordinate carbon with magnetic- and heteroatom-induced structural defects in a graphene lattice by a stoichiometric dehalogenation of perchlorinated (hetero)aromatic precursors [hexachlorobenzene, CCl (HCB), and pentachloropyridine, NCCl (PCP)] with transition metals such as copper in a combustion synthesis. This route allows the build-up of a carbon lattice by a chemistry free of hydrogen and oxygen compared to other pyrolytic approaches and yields either nitrogen-doped or -undoped graphene domains depending on the precursor. The resulting carbon was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM…

research product

Electronic structure of large disc-type donors and acceptors

Searching for new pi-conjugated charge-transfer systems, the electronic structure of a new acceptor-donor pair derived from coronene (C(24)H(12)) was investigated by ultraviolet photoelectron spectroscopy (UPS). The acceptor coronene-hexaone (C(24)H(6)O(6), in the following abbreviated as COHON) and the donor hexamethoxycoronene (C(30)H(24)O(6), abbreviated as HMC) were adsorbed as pure and mixed phases on gold substrates. At low coverage, COHON adsorption leads to the appearance of a charge-transfer induced interface state 1.75 eV below the Fermi energy. At multilayer coverage the photoemission intensity of the interface state drops and the valence spectrum of neutral COHON appears. The sa…

research product

Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

Nanoscale 12(9), 5444-5451 (2020). doi:10.1039/D0NR00724B

research product