0000000000192149

AUTHOR

Norbert Koch

0000-0002-6042-6447

showing 3 related works from this author

Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains

2015

Here we present the formation of predominantly sp-coordinate carbon with magnetic- and heteroatom-induced structural defects in a graphene lattice by a stoichiometric dehalogenation of perchlorinated (hetero)aromatic precursors [hexachlorobenzene, CCl (HCB), and pentachloropyridine, NCCl (PCP)] with transition metals such as copper in a combustion synthesis. This route allows the build-up of a carbon lattice by a chemistry free of hydrogen and oxygen compared to other pyrolytic approaches and yields either nitrogen-doped or -undoped graphene domains depending on the precursor. The resulting carbon was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM…

ChemistryGrapheneScanning electron microscopeInorganic chemistryGeneral Chemistry7. Clean energyBiochemistryCatalysis3. Good healthlaw.inventionMagnetizationsymbols.namesakeColloid and Surface ChemistryX-ray photoelectron spectroscopylawTransmission electron microscopysymbolsCarbide-derived carbonPhysical chemistryPyrolytic carbonRaman spectroscopyCHEMICAL-VAPOR-DEPOSITION; N-DOPED GRAPHENE; RECENT PROGRESS; FILMS; ELECTROCATALYSTS; NANORIBBONS; RADICALS; STATE
researchProduct

Electronic structure of large disc-type donors and acceptors

2010

Searching for new pi-conjugated charge-transfer systems, the electronic structure of a new acceptor-donor pair derived from coronene (C(24)H(12)) was investigated by ultraviolet photoelectron spectroscopy (UPS). The acceptor coronene-hexaone (C(24)H(6)O(6), in the following abbreviated as COHON) and the donor hexamethoxycoronene (C(30)H(24)O(6), abbreviated as HMC) were adsorbed as pure and mixed phases on gold substrates. At low coverage, COHON adsorption leads to the appearance of a charge-transfer induced interface state 1.75 eV below the Fermi energy. At multilayer coverage the photoemission intensity of the interface state drops and the valence spectrum of neutral COHON appears. The sa…

Valence (chemistry)Nuclear magnetic resonancePhotoemission spectroscopyChemistryBinding energyGeneral Physics and AstronomyWork functionDensity functional theoryElectronic structurePhysical and Theoretical ChemistryMolecular physicsAcceptorUltraviolet photoelectron spectroscopyPhysical Chemistry Chemical Physics
researchProduct

Modulating the luminance of organic light-emitting diodes via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

2020

Nanoscale 12(9), 5444-5451 (2020). doi:10.1039/D0NR00724B

Solar cells of the next generationMaterials sciencediarylethenes organic light-emitting diode photochromism self-assembled monolayers02 engineering and technologyElectroluminescence010402 general chemistry01 natural scienceschemistry.chemical_compoundDiaryletheneOLEDUltraviolet lightGeneral Materials ScienceDiodeSettore CHIM/02 - Chimica Fisicabusiness.industry600021001 nanoscience & nanotechnology0104 chemical sciencesIndium tin oxidechemistryElectrodeOptoelectronicsCharge carrier0210 nano-technologybusinessddc:600Nanoscale
researchProduct