0000000000192156

AUTHOR

Elisabeth Sehn

The Abundant Tegument Protein pUL25 of Human Cytomegalovirus Prevents Proteasomal Degradation of pUL26 and Supports Its Suppression of ISGylation

The tegument of human cytomegalovirus (HCMV) virions contains proteins that interfere with both the intrinsic and the innate immunity. One protein with a thus far unknown function is pUL25. The deletion of pUL25 in a viral mutant (Towne-ΔUL25) had no impact on the release of virions and subviral dense bodies or on virion morphogenesis. Proteomic analyses showed few alterations in the overall protein composition of extracellular particles. A surprising result, however, was the almost complete absence of pUL26 in virions and dense bodies of Towne-ΔUL25 and a reduction of the large isoform pUL26-p27 in mutant virus-infected cells. pUL26 had been shown to inhibit protein conjugation with the in…

research product

Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication.

The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from…

research product

Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release.

Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…

research product

Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress

Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…

research product

Ecdysteroid-dependent larval-adult oviduct transformation in the milkweed bugOncopeltus fasciatus requires absence of juvenile hormone

It has been tested whether juvenile hormone plays a role in the larval-adult transformation of lateral oviducts in the milkweed bug. The transformation is ecdysteroid-dependent, as was reported previously2. Application of precocene or juvenile hormone III proved that the absence of juvenile hormone is required.

research product

Differentiation and ultrastructure of the spermatogonial cyst cells in the milkweed bug,Oncopeltus fasciatus

Summary The testes of the newly hatched larva of Oncopeltus fasciatus consist of three different cell types enclosed by the tunica propria: the germline stem cells, the apical cells, and the follicle border cells which are the predecessors of the cyst progenitor cells. There are usually twelve somatically derived apical cells per follicle that no longer divide during postembryonic development. Their fine structural organization remains constant from hatching until death from old age. The apical complex cells are surrounded by at least four germline stem cells which all send cell projections toward the apical complex cells. A testicular follicle includes at least four border cells at the fir…

research product

A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.

Contains fulltext : 69178.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic anal…

research product

Immunoelectron Microscopy of Vesicle Transport to the Primary Cilium of Photoreceptor Cells

Cilia are organelles of high structural complexity. Since the biosynthetic machinery is absent from cilia all their molecular components must be synthesized in organelles of the cytoplasm and subsequently transported to the cilium. Ciliary cargos are thought to be translocated in the membrane of transport vesicles or association with these vesicles to the base of the cilium where the vesicles fuse with the periciliary target membrane for further delivery of their cargo into the ciliary compartment by the intraflagellar transport (IFT). Here we describe a modified preembedding labeling method as an alternative technique to conventional postembedding methods eligible for analyses of ciliary c…

research product

The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells

Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequ…

research product

PRCD is concentrated at the base of photoreceptor outer segments and is involved in outer segment disc formation.

Abstract Mutations of the PRCD gene are associated with rod-cone degeneration in both dogs and humans. Prcd is expressed in the mouse eye as early as embryonic day 14. In the adult mouse retina PRCD is expressed in the outer segments of both rod and cone photoreceptors. Immunoelectron microscopy revealed that PRCD is located at the outer segment rim, and that it is highly concentrated at the base of the outer segment. Prcd-knockout mice present with progressive retinal degeneration, starting at 20 weeks of age and onwards. This process is reflected by a significant and progressive reduction of both scotopic and photopic electroretinographic responses, and by thinning of the retina, and spec…

research product

Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release

Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…

research product