0000000000194102
AUTHOR
Nicole Gehring
Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster
Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides …
Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster.
Prevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Oskyddad (Osy)—a human ABCA12 paralog—contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Osy function provokes rapid desiccation. Osy is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Osy activity is reduced. …
Dysfunction of Torr causes a Harlequin-type ichthyosis-like phenotype in Drosophila melanogaster
AbstractPrevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Torr - a human ABCA12 paralog - contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Torr function provokes rapid desiccation. Torr is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Torr activity is redu…
Differential cystine and dibasic amino acid handling after loss of function of the amino acid transporter b0,+ AT (Slc7a9) in mice
Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 ( rBAT) and SLC7A9 ( b 0,+ AT). Gene targeting of the catalytic subunit ( Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b0,+. No remarkable gene expression changes were…