0000000000194102

AUTHOR

Nicole Gehring

showing 4 related works from this author

Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster

2020

Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides …

lcsh:Geneticslcsh:QH426-470lipidfungibarrierinsectcuticleDrosophilaFrontiers in Genetics
researchProduct

Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster.

2020

Prevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Oskyddad (Osy)—a human ABCA12 paralog—contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Osy function provokes rapid desiccation. Osy is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Osy activity is reduced. …

Cancer ResearchLife CyclesEmbryologyMutantCell MembranesATP-binding cassette transporterQH426-470Biochemistry0302 clinical medicineLarvaeAnimal WingsLoss of Function MutationMedicine and Health SciencesDrosophila ProteinsAnimal AnatomyGenetics (clinical)Barrier functionSkin0303 health sciencesbiologyDrosophila MelanogasterEukaryotaAnimal ModelsHarlequin IchthyosisLipidsCell biologyInsectsExperimental Organism SystemsEmbryology and OrganogenesisDrosophilaDrosophila melanogasterCellular Structures and OrganellesAnatomyIntegumentary SystemEmbryologie et organogenèseDrosophila ProteinAutre (Sciences du Vivant)Research Article[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]ArthropodaResearch and Analysis Methods03 medical and health sciencesModel OrganismsExtracellularGeneticsAnimalsABCA12DesiccationMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biologyEmbryosfungiOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrates[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesisbiology.proteinAnimal StudiesATP-Binding Cassette TransportersEpidermisZoology030217 neurology & neurosurgeryIchthyosis LamellarDevelopmental BiologyPLoS Genetics
researchProduct

Dysfunction of Torr causes a Harlequin-type ichthyosis-like phenotype in Drosophila melanogaster

2019

AbstractPrevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Torr - a human ABCA12 paralog - contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Torr function provokes rapid desiccation. Torr is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Torr activity is redu…

biologyChemistryfungiMutantATP-binding cassette transporterHarlequin Ichthyosisbiology.organism_classificationCell biologyTorrbiology.proteinExtracellularDrosophila melanogasterABCA12Barrier function
researchProduct

Differential cystine and dibasic amino acid handling after loss of function of the amino acid transporter b0,+ AT (Slc7a9) in mice

2013

Cystinuria is an autosomal recessive disease caused by mutations in SLC3A1 ( rBAT) and SLC7A9 ( b 0,+ AT). Gene targeting of the catalytic subunit ( Slc7a9) in mice leads to excessive excretion of cystine, lysine, arginine, and ornithine. Here, we studied this non-type I cystinuria mouse model using gene expression analysis, Western blotting, clearance, and brush-border membrane vesicle (BBMV) uptake experiments to further characterize the renal and intestinal consequences of losing Slc7a9 function. The electrogenic and BBMV flux studies in the intestine suggested that arginine and ornithine are transported via other routes apart from system b0,+. No remarkable gene expression changes were…

Malemedicine.medical_specialtyPeptide transporterArgininePhysiologyLysineCystineSLC7A9BiologyKidneyGFRMicechemistry.chemical_compoundInternal medicinemedicineAnimalsAmino acid transporterMice Knockoutchemistry.chemical_classificationKidneyCystinuriaAmino Acids DiaminoCystinuriaOrnithinemedicine.diseaseAmino acidMice Inbred C57BLDisease Models Animalmedicine.anatomical_structureEndocrinologychemistryBiochemistryAmino Acid Transport Systems BasicCystineGlomerular Filtration Rate
researchProduct