CrowdVAS-Net: A Deep-CNN Based Framework to Detect Abnormal Crowd-Motion Behavior in Videos for Predicting Crowd Disaster
With the increased occurrences of crowd disasters like human stampedes, crowd management and their safety during mass gathering events like concerts, congregation or political rally, etc., are vital tasks for the security personnel. In this paper, we propose a framework named as CrowdVAS-Net for crowd-motion analysis that considers velocity, acceleration and saliency features in the video frames of a moving crowd. CrowdVAS-Net relies on a deep convolutional neural network (DCNN) for extracting motion and appearance feature representations from the video frames that help us in classifying the crowd-motion behavior as abnormal or normal from a short video clip. These feature representations a…