0000000000194628
AUTHOR
T. Kautzsch
Frequency tripling for resonance ionization spectroscopy (RIS) of Cd
To explore the nucleosynthesis of heavy elements in the rapid neutron-capture process, investigations on short- lived, very neutron-rich Cd isotopes are planned that require pure samples. These will be produced at the CERN-ISOLDE on-line mass separator in combination with a chemically se- lective laser ion source. The excitation scheme for resonance ionization of Cd was tested in Mainz with a copper-vapor- pumped dye laser system. Due to the high ionization potential of Cd, frequency tripling was required for the first excita- tion step.1D 228: 8n m/. Laser light with an average power of 2m Wwas obtained after frequency tripling and was suc- cessfully used for RIS test measurements on cadmi…
Production of radioactive Ag ion beams with a chemically selective laser ion source
Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.
New states in heavy Cd isotopes and evidence for weakening of the N = 82 shell structure
A chemically selective laser ion source has been used in a β-decay study of heavy Ag isotopes into even-even Cd nuclides. Gamma-spectroscopic techniques in time-resolving event-by-event and multiscaling modes have permitted the identification of the first 2+ and 4+ levels in 126Cd78, 128Cd80, and tentatively the 2+ state in 130Cd82. From a comparison of these new states in 48Cd with the E(2+) and E(4+)/E(2+) level systematics of 46Pd and 52Te isotopes and several recent model predictions, possible evidence for a weakening of the spherical N = 82 neutron-shell below double-magic 132Sn is obtained.
Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes
The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.