0000000000194668
AUTHOR
Franco Chiavetta
An unsupervised region growing method for 3D image segmentation
The paper deals with 3D shape decomposition problem, objects are modelled as finite unions of almost-convex primitives. A new region growing method is proposed to extract meaningful objects parts. Parts are individuated by performing a set-partitioning of surface dominating points. The partition step returns labelled seeds from which to start a region growing procedure that propagate labels onto object surface patches. A fuzzy concept of λ-convexity is introduced to test noised real images. Experimental results are given.
A Layered Architecture for Sentiment Classification of Products Reviews in Italian Language
The paper illustrates a system for the automatic classification of the sentiment orientation expressed into reviews written in Italian language. A proper stratification of linguistic resources is adopted in order to solve the lacking of an opinion lexicon specifically suited for the Italian language. Experiments show that the proposed system can be applied to a wide range of domains.
A Lexicon-based Approach for Sentiment Classification of Amazon Books Reviews in Italian Language
We present a system aimed at the automatic classification of the sentiment orientation expressed into book reviews written in Italian language. The system we have developed is found on a lexicon-based approach and uses NLP techniques in order to take into account the linguistic relation between terms in the analyzed texts. The classification of a review is based on the average sentiment strenght of its sentences, while the classification of each sentence is obtained through a parsing process inspecting, for each term, a window of previous items to detect particular combinations of elements giving inversions or variations of polarity. The score of a single word depends on all the associated …
A PARALLEL ALGORITHM FOR ANALYZING CONNECTED COMPONENTS IN BINARY IMAGES
In this paper, a parallel algorithm for analyzing connected components in binary images is described. It is based on the extension of the Cylindrical Algebraic Decomposition (CAD) to a two-dimensional (2D) discrete space. This extension allows us to find the number of connected components, to determine their connectivity degree, and to solve the visibility problem. The parallel implementation of the algorithm is outlined and its time/space complexity is given.