0000000000194675
AUTHOR
Eckhard Strobel
The Quantum Scalar Field in Spherically Symmetric Loop Quantum Gravity
We consider the quantization of a spherically symmetric gravitational system coupled to a massless scalar field within the loop quantum gravity framework. Our results rely on the uniform discretizations method developed during the last years. We minimize the associated discrete “master constraint” using a trial state whose gravitational part is peaked around the classical Schwarzschild solution.
Revisiting the quantum scalar field in spherically symmetric quantum gravity
We extend previous results in spherically symmetric gravitational systems coupled with a massless scalar field within the loop quantum gravity framework. As starting point, we take the Schwarzschild spacetime. The results presented here rely on the uniform discretization method. We are able to minimize the associated discrete master constraint using a variational method. The trial state for the vacuum consists of a direct product of a Fock vacuum for the matter part and a Gaussian centered around the classical Schwarzschild solution. This paper follows the line of research presented by Gambini, Pullin and Rastgoo and a comparison between their result and the one given in this work is made.