Insight into Disrupted Spatial Patterns of Human Connectome in Alzheimer’s Disease via Subgraph Mining
Alzheimer’s disease (AD) is the most common cause of age-related dementia, which prominently affects the human connectome. In this paper, the authors focus on the question how they can identify disrupted spatial patterns of the human connectome in AD based on a data mining framework. Using diffusion tractography, the human connectomes for each individual subject were constructed based on two diffusion derived attributes: fiber density and fractional anisotropy, to represent the structural brain connectivity patterns. After frequent subgraph mining, the abnormal score was finally defined to identify disrupted subgraph patterns in patients. Experiments demonstrated that our data-driven approa…