0000000000194778

AUTHOR

M. De Napoli

showing 6 related works from this author

Exploring the 10Li structure by the d(9Li,p)10Li transfer reaction

2015

The 9Li + 2H reaction has been investigated at 11 AMeV incident energy at the ISAC II facility (TRIUMF). In the present paper we focus on the one-neutron transfer channel, which potentially holds spectroscopic information on the unbound nucleus 10Li. The TUDA setup has been used in order to detect and identify the outgoing 9Li at forward angles and the recoil protons at backward angles. This setup allows to study the 10Li emitted in the crucial region at forward angles in the center of mass.

Nuclear reactionPhysicsHistoryNuclear TheoryHadronCyclotronNuclear structureElementary particleComputer Science ApplicationsEducationlaw.inventionNuclear physicsRecoillawCenter of massNuclear ExperimentNucleonJournal of Physics: Conference Series
researchProduct

The d(9Li,p)10Li reaction as a tool to explore the 10Li structure

2015

The ground and low-lying states of the unbound nucleus 10Li were populated by the 9Li + 2H → 10Li + 1H reaction at 11 AMeV incident energy at the ISAC II facility (TRIUMF). In the experimental setup, the outgoing 9Li at forward angles and the recoil protons at backward angles were detected and identified. This setup allows to study the 10Li emitted in the crucial region at forward angles in the centre of mass.

Nuclear reactionPhysicsHistoryNuclear TheoryHadronNuclear structureElementary particleParticle detectorComputer Science ApplicationsEducationNuclear physicsBaryonRecoilAtomic physicsNuclear ExperimentNucleonJournal of Physics: Conference Series
researchProduct

Carbon fragmentation measurements and validation of the GEANT4 nuclear reaction models for hadrontherapy

2012

Nuclear fragmentation measurements are necessary when using heavy-ion beams in hadrontherapy to predict the effects of the ion nuclear interactions within the human body. Moreover, they are also fundamental to validate and improve the Monte Carlo codes for their use in planning tumor treatments. Nowadays, a very limited set of carbon fragmentation cross sections are being measured, and in particular, to our knowledge, no double-differential fragmentation cross sections at intermediate energies are available in the literature. In this work, we have measured the double-differential cross sections and the angular distributions of the secondary fragments produced in the (12)C fragmentation at 6…

PhysicsNuclear reactionRadiological and Ultrasound TechnologyHEAVY-ION REACTIONS; BEAM TRANSPORT; THERAPY;Monte Carlo methodBinary numberHeavy Ion RadiotherapyTHERAPYCarbonSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)IonNuclear physicsMolecular dynamicsFragmentation (mass spectrometry)CascadeHEAVY-ION REACTIONSHumansRadiology Nuclear Medicine and imagingNuclear ExperimentQuantumMonte Carlo MethodBEAM TRANSPORT
researchProduct

10Li low-lying resonances populated by one-neutron transfer

2015

The 9Li + 2H → 10Li + 1H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a 9Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing 9Li produced by the 10Li breakup at forward angles and the recoil protons emitted at backward angles. The 10Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

Nuclear reactionChemistryNuclear TheoryHadronParticle detectorSemiconductor detectorNuclear physicsRecoilPhysics::Accelerator PhysicsNeutronAtomic physicsNuclear ExperimentNucleonBeam (structure)
researchProduct

The FIRST experiment at GSI

2012

The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…

Nuclear and High Energy PhysicsIon beamPhysics::Instrumentation and Detectorsmedicine.medical_treatmentNuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ScintillatorElementary-particleFIRST7. Clean energy01 natural sciencesParticle detectorWire chamberNuclear physicsDipole magnetFragmentationPARTICLE THERAPYhadrontherapy; fragmentation; nuclear physics; elementary-particle; instrumentation; experimental methodsHadrontherapy0103 physical sciencesmedicineNeutron detectionddc:530Gaseous detectorION-BEAM010306 general physicsNuclear ExperimentDETECTORInstrumentationGEANT4PARTICLE THERAPY; FLUKA CODE; ION-BEAM; FRAGMENTATION; BENCHMARKING; RADIOTHERAPY; TRANSPORT; DETECTOR; GEANT4; FIRSTPhysicsParticle therapyTime projection chamber010308 nuclear & particles physicsExperimental methodsDetectorScintillatorTRANSPORTSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Hadrontherapy; Fragmentation; Nuclear physics; Elementary-particle; Experimental methods; InstrumentationFLUKA CODEBENCHMARKINGElementary-particle; Experimental methods; Fragmentation; Hadrontherapy; Instrumentation; Nuclear physics; Instrumentation; Nuclear and High Energy PhysicsRADIOTHERAPY
researchProduct

FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

2013

International audience; Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the …

HistorySilicon detectorApplied physicsPhysics::Instrumentation and DetectorsScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesSpace radiation030218 nuclear medicine & medical imagingEducationIonExperimental apparatuNuclear physics03 medical and health sciencesPhysics and Astronomy (all)0302 clinical medicineFragmentation (mass spectrometry)0103 physical sciencesNeutron detectionddc:530Silicon Vertex DetectorIon010306 general physicsNuclear ExperimentScintillation counterRadiation protectionPhysicsDetectorNuclear fragmentationComputer Science ApplicationsInternational collaborationProtection applicationMagnet[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph]Scientific programInternational cooperationNucleonInteraction region
researchProduct