0000000000194829

AUTHOR

Oleg Borodin

Some Things We Can Learn from Chemically Realistic Polymer Melt Simulations

We present in this contribution results from Molecular Dynamics (MD) simulations of a chemically realistic model of 1,4-polybutadiene (PB). The work we will discuss exemplifies the physical questions one can address with these types of simulations. We will specifically compare the results of the computer simulations with nuclear magnetic resonance (NMR) experiments, neutron scattering experiments and dielectric data. These comparisons will show how important it is to understand the torsional dynamics of polymers in the melt to be able to explain the experimental findings. We will then introduce a freely rotating chain (FRC) model where all torsion potentials have been switched off and show …

research product

13C NMR Spin−Lattice Relaxation and Conformational Dynamics in a 1,4-Polybutadiene Melt

We have performed molecular dynamics (MD) simulations of a melt of 1,4-polybutadiene (PBD, 1622 Da) over the temperature range 400-273 K. 13 C NMR spin-lattice relaxation times (T 1 ) and nuclear Overhauser enhancement (NOE) values have been measured from 357 to 272 K for 12 different resonances. The T 1 and NOE values obtained from simulation C-H vector P 2 (t) orientational autocorrelation functions were in good agreement with experiment over the entire temperature range. Analysis of conformational dynamics from MD simulations revealed that T 1 depends much less strongly on the local chain microstructure than does the mean conformational transition time. Spin-lattice relaxation for a give…

research product

Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations

Abstract We have investigated the dynamics of poly(ethylene oxide) (PEO) lithium-based salt electrolytes (PEO–LiBETI) using quasi-elastic neutron scattering (QENS). Measurements were carried out on the spectrometer NEAT (HMI, Berlin) above the melting temperature of PEO ( T m ≈65°C). The experimental data fully support the Molecular Dynamics (MD)-derived model of a heterogeneous dynamics in dilute PEO-salt electrolytes. In agreement with MD simulations carried out on PEO–LiPF 6 , we find evidences for the existence of two dynamic processes: (a) a faster process that is described in terms of the pure PEO dynamics and (b) a second component which we identify with the slower motion of the PEO …

research product