0000000000195199
AUTHOR
Fabio Formenti
A bug's life: Delving into the challenges of helminth microbiome studies.
The body of vertebrates is inhabited by trillions of microorganisms, i.e. viruses, archaea, bacteria and unicellular eukaryotes, together referred to as the ‘microbiota’. Similarly, vertebrates also host a plethora of parasitic worms (the ‘macrobiota’), some of which share their environment with the microbiota inhabiting the gastrointestinal tract [1]. Complex interactions between the helminths and the gut microbiota have been associated with establishment of parasite infection, disease manifestations, and host immune-modulation [2, 3]. Remarkably, not only enteric helminths alter the 26 gut microbiome composition [4], but also the infection with blood flukes of the genus Schistosoma has be…
Helminth Microbiota Profiling Using Bacterial 16S rRNA Gene Amplicon Sequencing: From Sampling to Sequence Data Mining
Symbiont microbial communities play important roles in animal biology and are thus considered integral components of metazoan organisms, including parasitic worms (helminths). Nevertheless, the study of helminth microbiomes has thus far been largely overlooked, and symbiotic relationships between helminths and their microbiomes have been only investigated in selected parasitic worms. Over the past decade, advances in next-generation sequencing technologies, coupled with their increased affordability, have spurred investigations of helminth-associated microbial communities aiming at enhancing current understanding of their fundamental biology and physiology, as well as of host-microbe intera…