The FLUXCOM ensemble of global land-atmosphere energy fluxes
Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For…
Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data
Abstract The accurate quantification of carbon fluxes at continental spatial scale is important for future policy decisions in the context of global climate change. However, many elements contribute to the uncertainty of such estimate. In this study, the uncertainties of eight days gross primary production (GPP) predicted by Random Forest (RF) machine learning models were analysed at the site, ecosystem and European spatial scales. At the site level, the uncertainties caused by the missing of key drivers were evaluated. The most accurate predictions of eight days GPP were obtained when all available drivers were used (Pearson's correlation coefficient, ρ ~ 0.84; Root Mean Square Error (RMSE…
Ranking drivers of global carbon and energy fluxes over land
The accurate estimation of carbon and heat fluxes at global scale is paramount for future policy decisions in the context of global climate change. This paper analyzes the relative relevance of potential remote sensing and meteorological drivers of global carbon and energy fluxes over land. The study is done in an indirect way via upscaling both Gross Primary Production (GPP) and latent energy (LE) using Gaussian Process regression (GPR). In summary, GPR is successfully compared to multivariate linear regression (RMSE gain of +4.17% in GPP and +7.63% in LE) and kernel ridge regression (+2.91% in GPP and +3.07% in LE). The best GP models are then studied in terms of explanatory power based o…
Compensatory water effects link yearly global land CO2 sink changes to temperature
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…
Global Groundwater-Vegetation Relations
Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater-vegetation interactions are poorly understood at the global scale. Using several high-resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two-thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture-limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, …