0000000000195425
AUTHOR
Peter North
Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data
Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the ESA's Sentinel 3 (S3) satellite, accurate LST retrieval methodologies exploiting the synergy between OLCI and SLSTR instruments can be developed. In this paper we propose a candidate methodology for retrieving LST from data acquired with the forthcoming S3 instruments. The LST algorithm is based on the Split-Window (SW) technique with an explicit dependence on surface emissivity, in contrast to the AATSR level 2 algorithm…
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegeta…
Quantitative global mapping of terrestrial vegetation photosynthesis
Although traditional remote sensing systems based on spectral reflectance can already provide estimates of the 'potential' photosynthetic activity of terrestrial vegetation through the quantification of total canopy chlorophyll content or absorbed photosynthetic radiation, the determination of the 'actual' photosynthetic activity of terrestrial vegetation requires information about how the absorbed light is used by plants, such as vegetation fluorescence, using very high spectral resolution spectroscopy in the range 650-800 nm. The Fluorescence Explorer (FLEX) mission, selected in November 2015 as the 8th Earth Explorer by the European Space Agency (ESA), carries the FLORIS spectrometer, wi…