0000000000198936
AUTHOR
S. Giron
Coulomb dissociation of 27P
International audience; In this work the astrophysical 26Si(p,γ)27P reaction is studied using the Coulomb dissociation technique. We performed a 27P Coulomb Dissociation experiment at GSI, Darmstadt (28 May-5 June 2007) using the ALADIN-LAND setup which allows complete-kinematic studies. A secondary 27P beam at 498 AMeV impinging a 515mg/cm2 Pb target was used. The relative energy of the outgoing system (26Si+p) is measured obtaining the resonant states of the 27P. Preliminary results show four resonant states measured at 0.36±0.07, 0.88±0.09, 1.5±0.2, 2.3±0.3 MeV and evidence of a higher state at around 3.1 MeV. The preliminary total cross section obtained for relative energies between 0 a…
Status of the g-2 experiment at BNL
The muon g-2 experiment at Brookhaven has successfully completed two exploratory runs using pion injection and direct muon injection for checkout and initial data taking. The main components of the experiment, which include the pion beam line, the superconducting storage ring and inflector magnets, the muon kicker and the lead-scintillating fiber calorimeters have been satisfactorily commissioned. First results on the anomalous magnetic moment of the positive muon from pion injection are in good agreement with previous experimental results for a(mu+) and a(mu-) from CERN and of comparable accuracy (13 ppm). Analysis of the 1998 muon injection run is in progress and expected to improve the p…
Coulomb dissociation of 27P: A reaction of astrophysical interest
The ground-state decay of 26Al(0+) (T 1/2=1.05× 106) has a shorter life-time than the Universe. The presence of this element in the Galaxy was measured via g-ray spectroscopy, showing that the nucleosynthesis of this element is an ongoing process in stars. The proton-capture reaction 26Si(p,γ) 27P competes with the production of 26Al(0+) by β-decay. Coulomb dissociation of 27P has been suggested as an indirect method to measure radiative-proton capture when the direct reaction is not feasible. Such an experiment was performed at GSI with a secondary 27P beam produced by fragmenting a 36Ar primary beam at 500 A MeV. Two main observables are preliminarily presented in this work: the reaction …
Coulomb dissociation of P 27 at 500 MeV/u
J. Marganiec et al. ; 15 págs.; 14 figs.; 6 tabs.