0000000000198957

AUTHOR

Cliburn Chan

Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.

Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or less). Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect extremely low frequency event subsets without biasing the estimate by pre-processing…

research product

Managing Multi-center Flow Cytometry Data for Immune Monitoring.

With the recent results of promising cancer vaccines and immunotherapy 1 – 5 , immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a…

research product

Flow Cytometry in Cancer Immunotherapy: Applications, Quality Assurance, and Future

Cancer immunotherapy seeks to elicit or augment the antitumor immune response in a patient in order to enlist the help of the patient’s own immune system for tumor control. In this context, immune monitoring provides evidence of immunogenicity, guides the choice and dosage of antigens, assesses the effects of immune modulators and therapy combinations, and has the potential to reveal early biomarkers of clinical efficacy. In view of their role in the anticancer immune response, the quantity and quality of tumor antigen-specific effector CD4+ and CD8+ T cells are of particular interest, and characterization of regulatory T cells and myeloid-derived suppressor cells is increasingly relevant. …

research product