0000000000199099
AUTHOR
N. Lecesne
Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes
Coulomb-excitation experiments are performed with postaccelerated beams of neutron-deficient Po196,198,200,202 isotopes at the REX-ISOLDE facility. A set of matrix elements, coupling the low-lying states in these isotopes, is extracted. In the two heaviest isotopes, Po200,202, the transitional and diagonal matrix elements of the 2+1 state are determined. In Po196,198 multistep Coulomb excitation is observed, populating the 4+1,0+2, and 2+2 states. The experimental results are compared to the results from the measurement of mean-square charge radii in polonium isotopes, confirming the onset of deformation from Po196 onwards. Three model descriptions are used to compare to the data. Calculati…
New developments of the in-source spectroscopy method at RILIS/ISOLDE
At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi…
Hot-cavity studies for the Resonance Ionization Laser Ion Source
International audience; The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency an…
Mass Measurements with the CSS2 and CIME cyclotrons at GANIL
Commune avec ACEN; This paper presents two original direct mass-measurement techniques developed at GANIL using the CSS2 and CIME cyclotrons as high-resolution mass spectrometers. The mass measurement with the CSS2 cyclotron is based on a time-of-flight method along the spiral trajectory of the ions inside the cyclotron. The atomic mass excesses of 68Se and 80Y recently measured with this technique are -53.958(246) MeV and -60.971(180) MeV, respectively. The new mass-measurement technique with the CIME cyclotron is based on the sweep of the acceleration radio-frequency of the cyclotron. Tests with stable beams have been performed in order to study the accuracy of this new mass-measurement m…
Performance of Dye and Ti:sapphire laser systems for laser ionization and spectroscopy studies at S3
The novel and sensitive In-Gas Laser Ionization Spectroscopy (IGLIS) technique enables high-precision laser spectroscopy of the heaviest elements and isotopes very far from stability that are produced in fusion-evaporation reactions at in-flight separators. Powerful and dedicated laser systems are required in these facilities to realize in-gas jet laser spectroscopy with optimal spectral resolution and efficiency. The performance with respect to the requirements for IGLIS studies at the low energy front-end of the Super Separator Spectrometer (S3) at GANIL, France, of Dye and Ti:sapphire laser systems is investigated. In addition, a number of specific experimental cases on key isotopes of t…
Optimization of a hot-cavity type resonant ionization laser ion source
TuePS05; International audience; Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many RadioactiveIon Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively.Grand Accélérateur National d’Ions Lourds (GANIL) Ion Source using Electron Laser Excitation(GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laserion source at GANIL facility. The ion source body has been designed as a modular system toinvestigate different experimental approaches by varying the design parameters, to develop the futureon-line laser ion source. The aim of this project is to determine the best technic…
Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion
Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…
Precision Measurement of the First Ionization Potential of Nobelium
One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05 eV. This work provides a stringent benchmark for st…
Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source @ LISOL
The Leuven Isotope Separator On-Line (LISOL) facility at the Cyclotron Research Center (CRC) Louvain-la-Neuve; The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63Cu. A final run under on-line conditions in which the ra…
Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL
To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility…
In-gas laser ionization and spectroscopy of actinium isotopes near the N=126 closed shell
The in-gas laser ionization and spectroscopy (IGLIS) techniquewas applied on the $^{212–215}$Ac isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the $^{212–215}$Ac isotopes, electric-quadrupole moments and nuclear spins for the $^{214,215}$Ac isotopes are presented and discussed. A good agreement is obtained with lar…
Progress of resonant ionization laser ion source development at GANIL.
SPIRAL2 (Systeme de Production d’Ions Radioactifs Acceleres en Ligne) is a research facility under construction at GANIL (Grand Accelerateur National d’Ions Lourds) for the production of radioactive ion beams by isotope separation on-line methods and low-energy in-flight techniques. A resonant ionization laser ion source will be one of the main techniques to produce the radioactive ion beams. GISELE (GANIL Ion Source using Electron Laser Excitation) is a test bench developed to study a fully operational laser ion source available for Day 1 operations at SPIRAL2 Phase 2. The aim of this project is to find the best technical solution which combines high selectivity and ionization efficiency w…
The MORA project
The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.
First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE
The Laser Ion Source and Trap (LIST) provides a new mode of operation for the resonance ionization laser ion source (RILIS) at ISOLDE/CERN, reducing the amount of surface-ionized isobaric contaminants by up to four orders of magnitude. After the first successful on-line test at ISOLDE in 2011 the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. The measurements of the improved LIST indicate more than a twofold increase in efficiency compared to the LIST of the 2011 run. The suppression of surface-ionize…