0000000000199361

AUTHOR

Yaqun Zou

MRI in DNM2-related centronuclear myopathy: Evidence for highly selective muscle involvement

Dynamin 2 has recently been recognized as a causative gene for the autosomal dominant form of centronuclear myopathy (dominant centronuclear myopathy). Here we report an affected father and daughter with dynamin 2 related AD CNM with predominantly distal onset of weakness. In addition to the diagnostic central location of myonuclei the muscle biopsy also showed core-like structures. Muscle MRI in the lower leg revealed prominent involvement of the soleus, but also of the gastrocnemius and the tibialis anterior whereas in the thigh there was a consistent pattern of selective involvement of adductor longus, semimembranosus, biceps femoris, rectus femoris, and vastus intermedius with relative …

research product

Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy

Reducing body myopathy (RBM) is a rare disorder causing progressive muscular weakness characterized by aggresome-like inclusions in the myofibrils. Identification of genes responsible for RBM by traditional genetic approaches has been impossible due to the frequently sporadic occurrence in affected patients and small family sizes. As an alternative approach to gene identification, we used laser microdissection of intracytoplasmic inclusions identified in patient muscle biopsies, followed by nanoflow liquid chromatography-tandem mass spectrometry and proteomic analysis. The most prominent component of the inclusions was the Xq26.3-encoded four and a half LIM domain 1 (FHL1) protein, expresse…

research product

G.P.5.10 Novel FHL1 mutation in familial mixed reducing body myopathy with rigid spine

research product

Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1

We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via th…

research product

G.O.2 Proteomic identification of the LIM domain protein FHL1 as the gene-product mutated in reducing body myopathy

research product