0000000000199466

AUTHOR

Maria Clara Citarrella

0000-0002-8627-5288

An innovative route to prepare in situ graded crosslinked PVA graphene electrospun mats for drug release

We present a fast, one step method to obtain PVA/graphene/chlorhexidine nanofibrous membranes, with a crosslinking gradient along their cross-section. Briefly, polymeric solutions were electrospun onto a heated plate, enabling the in situ crosslinking of PVA macromolecules. Of course, the crosslinking degree of such structures was found to decrease upon the distance from the plate during deposition. The outcomes reveal the crucial role of graphene, capable of promoting heat transfer throughout the entire structure, thus leading to 70-80% crosslinking degrees and preventing delamination issues. Such membranes were compared to untreated and oven thermally treated ones, and a robust relationsh…

research product

Green composites for fertilizer controlled release produced by compression molding and FDM

Excessive fertilization causes ecological problems due to leaching issues. To solve this problem and promote agriculture sustainability an innovative green composite for controlled release fertilizers was produced by adding NPK fertilizer flour to a biodegradable polymer with or without Opuntia Ficus Indica (OFI) particles. Six formulations were produced and employed for the fabrication of devices both for compression molding (CM) and fused deposition modeling (FDM). Both fillers displayed a good dispersion in the composites, excellent adhesion with the polymeric matrix and effectively acted as reinforcement. The decrease of NPK release rate (up to 30 days) was achieved using whole composit…

research product

BIODEGRADING BIOFILMS ON INNOVATIVE BIOPOLYMERIC SUPPORTS

ABSTRACT Water bioremediation is traditionally carried out using ‘ free ’ bacterial cells, however, in recent years, utilization of ‘immobilized’ bacterial cells on adsorbing matrices, has gained attention as a promising technique due to biotechnological and economic benefits (Sonawane et al., 2022). Bacterial biofilms show greater resilience, survival and degradative activity for longer periods than cells in the planktonic state (Alessandrello et al., 2017); moreover immobilization reduces bioremediation costs, eliminate cell dilution and dispersion in the environment (Bayat et al., 2015). Possible applications of immobilized biodegrading bacteria require long-term survival and maintenance…

research product

Nanofibrous Polymeric Membranes for Air Filtration Application: A Review of Progress after the COVID‐19 Pandemic

Air pollution is one of the major global problems causing around 7 million dead per year. In fact, a connection between infectious disease transmission, including COVID-19, and air pollution has been proved: COVID-19 consequences on human health are found to be more severe in areas characterized by high levels of particulate matter (PM). Therefore, after the COVID-19 pandemic, the production of air filtration devices with high filtration efficiency has gained more and more attention. Herein, a review of the post-COVID-19 pandemic progress in nanofibrous polymeric membranes for air filtration is provided. First, a brief discussion on the different types of filtration mechanism and the key pa…

research product

Hedysarum coronarium-Based Green Composites Prepared by Compression Molding and Fused Deposition Modeling

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts.…

research product

OPUNTIA FICUS INDICA/MATER-BI® BASED GREEN COMPOSITES FOR FERTILIZER CONTROLLED RELEASE DEVICES PRODUCTION

research product

3D PRINTED GREEN COMPOSITES BASED ON POLYMERIC MATRICES AND ANCHOVY FISHBONE WASTES

research product

Ionic tactile sensors as promising biomaterials for artificial skin: Review of latest advances and future perspectives

Abstract Ionic tactile sensors (ITS) are an emerging subfield of wearable electronics, capable of mimicking the human skin, including not only the typical anisotropic structure, mechanical behaviour, and tactile functions but even the mechanosensitive ionic channels that are crucial for the human sense of touch. With the rapid development of intelligent technology, such bioinspired materials constitute the core foundation of intelligent systems and are a candidate to be the next generation e-skins, offering a more accurate and evolved biointerface. In the latest years, a wealth of novel ultra-stretchable ITS was proposed, progressively refining the choice of soft materials, including ion ge…

research product

Green composites based on biodegradable polymers and anchovy (Engraulis Encrasicolus) waste suitable for 3D printing applications

Every day large amounts of fish waste are produced and grossly discarded in markets around the world causing environmental and hygiene issue. The use of these scraps for the production of materials with higher added value can definitely contributed to solve this problem. In this work, 10% and 20% of anchovy fishbone powder (EE), obtained by market waste, were microbiological and mechanical tested and subsequently added to polylactic acid (PLA) and to a commercial blend of biodegradable co-polyesters (Mater-Bi®). Rheological characterization suggests the potential printability of all prepared composites filaments. 10% EE filled composites showed outstanding printability. Morphological analys…

research product

Green Composites Based on Hedysarum coronarium with Outstanding FDM Printability and Mechanical Performance

The addition of natural scraps to biodegradable polymers has gained particular interest in recent years, allowing reducing environmental pollution related to traditional plastic. In this work, new composites were fabricated by adding 10% or 20% of Hedysarum coronarium (HC) flour to Poly (lactic acid) (PLA). The two formulations were first produced by twin screw extrusion and the obtained filaments were then employed for the fabrication of composites, either for compression molding (CM) or by fused deposition modeling (FDM), and characterized from a morphological and mechanical point of view. Through FDM it was possible to achieve dense structures with good wettability of the filler that, on…

research product

VALORIZATION OF ANCHOVY FISHBONE WASTES FOR THE PREPARATION OF BIOPOLYMERIC BASED GREEN COMPOSITES FOR FOOD PACKAGING APPLICATIONS

research product

Green Composites Based on Mater-Bi® and Solanum lycopersicum Plant Waste for 3D Printing Applications

3D printability of green composites is currently experiencing a boost in importance and interest, envisaging a way to valorise agricultural waste, in order to obtain affordable fillers for the preparation of biodegradable polymer-based composites with reduced cost and environmental impact, without undermining processability and mechanical performance. In this work, an innovative green composite was prepared by combining a starch-based biodegradable polymer (Mater-Bi®, MB) and a filler obtained from the lignocellulosic waste coming from Solanum lycopersicum (i.e., tomato plant) harvesting. Different processing parameters and different filler amounts were investigated, and the obtained sample…

research product

Biodegradable Membrane with High Porosity and Hollow Structure Obtained via Electrospinning for Oil Spill Clean-up Application

The use of biodegradable polymers for the production of membranes to be used in wastewater treatment has attracted increasing interest considering the possibility of reducing the risk of second pollution. In this work, porous fibrous membranes based on polylactic acid and polyethylene oxide (PEO) blends were prepared. The solutions were electrospun using two approaches: (i) conventional coaxial electrospinning followed by leaching treatment (double-step, DS); (ii) coaxial wet electrospinning with in situ leaching (single-step, SS). By varying PEO type and processing method it was possible to control membranes structure and porosity. DS leaching treatment lead to surface porosity (i.e. shell…

research product

Opuntia Ficus Indica based green composites for NPK fertilizer controlled release produced by compression molding and fused deposition modeling

Excessive fertilization causes ecological problems due to leaching issues. To solve this problem and promote agriculture sustainability an innovative green composite for controlled release fertilizers was produced by adding NPK fertilizer flour to a biodegradable polymer with or without Opuntia Ficus Indica (OFI) particles. Six for- mulations were produced and employed for the fabrication of devices both for compression molding and fused deposition modeling (FDM). Both fillers displayed a good dispersion in the composites, excellent adhesion with the polymeric matrix and effectively acted as reinforcement. The decrease of NPK release rate (up to 30 days) was achieved using whole composites …

research product