0000000000199514

AUTHOR

Kartik Chandran

A plant-wide wastewater treatment plant model for carbon and energy footprint: Model application and scenario analysis

Abstract A new model for accounting carbon and energy footprint of wastewater treatment plants (WWTPs) is proposed. The model quantifies direct and indirect greenhouse gas (GHG) emissions related to biological and physical processes of a WWTP. The model takes into account several innovative aspects with respect to already available literature models: i. kinetic/mass-balances; ii. nitrification as a two-step process; iii. nitrous oxide (N2O) formation during nitrification and denitrification both in dissolved and off-gas forms. A full-scale application has been performed by adopting the case study of a real WWTP. A scenario analysis was performed to quantify the influence of: composition of …

research product

Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on different MBR configurations

Abstract This study aimed at evaluating the nitrous oxide (N2O) emissions from membrane bioreactors (MBRs) for wastewater treatment. The study investigated the N2O emissions considering multiple influential factors over a two-year period: (i) different MBR based process configurations; (ii) wastewater composition (municipal or industrial); (iii) operational conditions (i.e. sludge retention time, carbon-to-nitrogen ratio, C/N, hydraulic retention time); (iv) membrane modules. Among the overall analysed configurations, the highest N2O emission occurred from the aerated reactors. The treatment of industrial wastewater, contaminated with salt and hydrocarbons, provided the highest N2O emission…

research product