0000000000199536

AUTHOR

Andrea Frosini

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words

In this paper we study the number r(bwt) of equal-letter runs produced by the Burrows-Wheeler transform (BWT) when it is applied to purely morphic finite words, which are words generated by iterating prolongable morphisms. Such a parameter r(bwt) is very significant since it provides a measure of the performances of the BWT, in terms of both compressibility and indexing. In particular, we prove that, when BWT is applied to whichever purely morphic finite word on a binary alphabet, r(bwt) is O(log n), where n is the length of the word. Moreover, we prove that r(bwt) is Theta(log n) for the binary words generated by a large class of prolongable binary morphisms. These bounds are proved by pro…

research product

Enumeration of L-convex polyominoes by rows and columns

In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once.Using the ECO method, we prove that the number fn of L-convex polyominoes with perimeter 2(n + 2) satisfies the rational recurrence relation fn = 4fn-1 - 2fn-2, with f0 = 1, f1 = 2, f2 = 7. Moreover, we give a combinatorial interpretation of this statement. In the last section, we present some open problems.

research product

Combinatorial aspects of L-convex polyominoes

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In …

research product

A Tomographical Characterization of L-convex Polyominoes

Our main purpose is to characterize the class of L-convex polyominoes introduced in [3] by means of their horizontal and vertical projections. The achieved results allow an answer to one of the most relevant questions in tomography i.e. the uniqueness of discrete sets, with respect to their horizontal and vertical projections. In this paper, by giving a characterization of L-convex polyominoes, we investigate the connection between uniqueness property and unimodality of vectors of horizontal and vertical projections. In the last section we consider the continuum environment; we extend the definition of L-convex set, and we obtain some results analogous to those for the discrete case.

research product