0000000000199553
AUTHOR
Luigi Schirone
Highly Compact Partial Power Converter for a Highly Efficient PV-BESS Stacked Generation System
The inherently intermittent nature of photovoltaic (PV) energy has brought increasing interest towards the integration between PV sources and Battery Energy Storage Systems (BESS). In this paper, a Series Partial Power Processing (PPP) converter based on Capacitive Power Transfer (CPT) is proposed to integrate PV and BESS in a grid-connected inverter system. The proposed converter has been simulated according to a PV string capable to provide 1430 W under full irradiance conditions, a BESS nominal voltage equal to 215 V and a solar inverter assumed to operate with a minimum voltage of 150 V and a maximum current of 10 A. Simulation tests carried out at different conditions of solar radiatio…
A hybrid storage system for wireless sensor nodes powered with energy harvesting
With the recent development of Internet of Things (IoT) and Wireless Sensor Networks (WSN), research and industry have been increasingly focusing on the opportumty of collecting the energy arising from the environment. The Energy Harvesting provides the possibility to supply devices which are placed out of reach or in hazardous spots, e.g. the Wireless Sensor Nodes. Among the different parts belonging to an Energy Harvesting system, the power management network represents a challenging topic. In this paper a Hybrid Energy Storage System (HESS) usable for a WSN powered with Energy Harvesting, based on a battery-capacitor integration, is presented. The experimental results concerning the asse…
Efficient contactless power transfer system for EVs
Based on the inductive power transfer (IPT), the contactless approach allows safe and comfortable operations of battery charging for Electric Vehicles (EVs). In this paper, a contactless system particularly suitable for E-bike battery charging is proposed. A practical realization of the system has been carried out, aiming at the system evaluation in terms of working and efficiency. Through a phase shift modulation, a power regulation has been implemented. The target power level is 100 W.
A comparison of different DC-DC converters for energy storage management in nearly-Zero Energy Buildings
In the recent years, there has been a notable interest towards renewable sources, energy saving and efficiency optimization, in order to reduce the damages brought by fine dust and greenhouse gases in terms of safety, health and environmental protection. In the building sector renewable sources and energy efficiency optimization are leading to a large scale employment of nearly-Zero Energy Buildings (n-ZEBs), meaning that the balance between produced and required energy is negligible. For a proper n-ZEB implementation, a power system architecture has to be accurately designed, according to the existing renewable sources, loads and storage systems. In this paper, an investigation on differen…
Power Bus Management Techniques for Space Missions in Low Earth Orbit
In space vehicles, the typical configurations for the Solar Array Power Regulators in charge of managing power transfer from the solar array to the power bus are quite different from the corresponding devices in use for terrestrial applications. A thorough analysis is reported for the most popular approaches, namely Sequential Switching Shunt Regulation and parallel-input Pulse Width Modulated converters with Maximum Power Point Tracking. Their performance is compared with reference to a typical mission in low Earth orbit, highlighting the respective strengths and weaknesses. A novel solar array managing technique, the Sequential Maximum Power Tracking, is also introduced in the trade-off a…
Preliminary test on a cascode switch for high-frequency applications
Nowadays, an increasing electrification level is being addressed towards different sectors, such as transportation and industrial electronics. To bear that, high speed electrical machines represent a mature technology in different application fields, e.g. avionics, automotive, compressors and spindles. In order to guarantee high speed while keeping high power quality without adopting bulky filtering circuits, DC-AC converters shall be controlled by means of high Pulse Width Modulation (PWM) frequencies. In addition to the emerging switching device technologies, such as those based on Silicon-Carbide (SiC) and Gallium-Nitride (GaN), alternative circuital topologies are crucial in order to co…
Predictive dead time controller for GaN-based boost converters
A dynamic dead time controller is presented, specifically intended to operate in synchronous boost converters based on GaN field-effect transistor switches. These transistors have a reduced stored charge with respect to silicon metal–oxide–semiconductor field-effect transistors with similar breakdown voltage and series resistance, and can operate at higher frequencies with reduced switching losses. On the other hand, the voltage drop in reverse conduction is typically more than doubled with respect to silicon devices resulting in relevant power losses during the free-wheeling phases. Therefore, dynamic control of dead time can be profitably applied even in converters operating in the tens o…
Design and Realization of a Bidirectional Full Bridge Converter with Improved Modulation Strategies
In this paper a Full-Bridge Converter (FBC) for bidirectional power transfer is presented. The proposed FBC is an isolated DC-DC bidirectional converter, connected to a double voltage source&mdash
Energy Policies and Sustainable Management of Energy Sources
Sustainability of current energy policies and known mid-term policies are analised in their multiple facets. First an overview is given about the trend of global energy demand and energy production, analysing the share of energy sources and the geographic distribution of demand, on the basis of statistics and projections published by major agencies. The issue of sustainability of the energy cycle is finally addressed, with specific reference to systems with high share of renewable energy and storage capability, highlighting some promising energy sources and storage approaches.
Highly Efficient Capacitive Galvanic Isolation for EV Charging Stations
This paper proposes an isolated Switched Capacitor (SC) power converter which provides galvanic isolation through Capacitive Power Transfer (CPT). The combination of these two technologies might answer for electrical and power requirements in different electrical mobility application fields, such as battery charging. Accordingly, due to the low conversion losses the combination of these two technologies can provide, compact, cost effective and highly efficient power converters can be derived, thus potentially answering the scalability requirements for the Electric Vehicles (EV) market. To assess the operation of the proposed circuital solution, a Full Bridge (FB) CPT isolated interfacing co…
Energy needs and sustainable management of the energy cycle
The issue of sustainability of the energy policies is analised in its manifold facets. An overview is given about the trend of global energy needs and energy production, analysing the geographic distribution of consumptions and the share of energy sources, on the basis of the statistics and projections published by major agencies. The issue of sustainability of the energy cycle is finally addressed, highlighting how the use of biomasses as an energy source and of hydrogen as an energy carrier are among the most promising approaches.
An inductive charger for automotive applications
The inductive charging represents a valid solution for the power transfer in automotive applications. Due to the Inductive Power Transfer (IPT), the wireless battery charging of Electric Vehicles (EVs) provides several benefits. In this paper, an inductive charger which is particularly suitable for electrical bicycles is proposed. A practical realization of the system has been carried out, and the system has been tested in terms of working and efficiency. Through a Phase Shift Modulation (PSM), a power regulation has been implemented. The target power is 100 W.
Development of bidirectional dc-dc converters for hybrid power sources - Final Report
A Bidirectional Isolated Full-Bridge Converter was designed, prototyped and tested. The device is intended to interface a Bank of Supercapacitors with a battery-powered bus, in order to boost the capability of supplying large power peaks. The converter was based on the Isolated Dual Active Bridge configuration. When driven by an external control voltage, it is capable of generating in both directions a train of current pulses, with 2kW peak power, for any battery voltage in the range 24-32V and for any supercapacitor voltage in the range 35-70V. Worst-case battery current was 70A. Pulse duration was 100ms with 50% duty cycle and 1 ms rise time.